图的深度优先搜索

深度优先搜索是一种在开发爬虫早期使用较多的方法。它的目的是要达到被搜索结构的叶结点(即那些不包含任何超链的HTML文件)。在一个HTML文件中,当一个超链被选择后,被链接的HTML文件将执行深度优先搜索,即在搜索其余的超链结果之前必须先完整地搜索单独的一条链。深度优先搜索沿着HTML文件上的超链走到不能再深入为止,然后返回到某一个HTML文件,再继续选择该HTML文件中的其他超链。当不再有其他超链可选择时,说明搜索已经结束。

(一)基本思想

深度优先遍历图的方法是,从图中某顶点v出发:
1 访问顶点v;
2 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
3 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。

(二)代码实现

有一个图如下,求深度优先搜索顺序。

graph.png

分析:首先看看每个元素和哪些元素相邻

元素相邻元素
12,3
21,4,5
31,6,7
42,8
52,8
63,7
73,6
84,5

(1)假设从节点1开始遍历(事实上可以从任何一个节点开始),与1相邻的是2和3
(2)遍历2之后,进入递归。2有三个相邻元素,1,4,5。因为1已经遍历过了,因此遍历4
(3)遍历4之后,进入递归。与4相邻的是2和8,因为2已经遍历过了,所以遍历8
(4)遍历8之后,进入递归。与8相邻的是4和5,因为4已经遍历过了,所以遍历5
(5)遍历5之后,进入递归。与5相邻的是2和8,因为2和8都已经遍历过了,所以递归终止。返回步骤(4)
(6)因为步骤(4)中的4和5都已经遍历过了,返回步骤(3)
(7)因为步骤(3)中的2和8都已经遍历过了,返回步骤(2)
(8)因为步骤(2)中的1,4,5都已经遍历过了,返回步骤(1)
(9)因为步骤(1)中的2已经遍历过了,这次遍历的是3
(10)遍历3之后,进入递归。与3相邻的是6和7,所以遍历6
(11)遍历6之后,进入递归。与6相邻的是3和7,因为3已经遍历过了,所以遍历7
(12)遍历7之后,进入递归。与7相邻的是3和6,因为3和6都已经遍历过了,递归结束。返回步骤(11)
(13)在(11)中,3和7都遍历过了,返回步骤(10)
(14)在(10)中,6和7都遍历过,返回步骤(1)
(15)在步骤(1)中,没有未遍历过的元素。遍历结束。
由上面的15个步骤可知,深度搜索遍历的顺序为:1,2,4,8,5,3,6,7。

下面是代码实现:

#!/usr/bin/python
# -*- coding: utf-8 -*-

class Graph(object):

    def __init__(self,*args,**kwargs):
        self.node_neighbors = {}
        self.visited = {}

    def add_nodes(self,nodelist):

        for node in nodelist:
            self.add_node(node)

    def add_node(self,node):
        if not node in self.nodes():
            self.node_neighbors[node] = []

    def add_edge(self,edge):
        u,v = edge
        if(v not in self.node_neighbors[u]) and ( u not in self.node_neighbors[v]):
            self.node_neighbors[u].append(v)

            if(u!=v):
                self.node_neighbors[v].append(u)

    def nodes(self):
        return self.node_neighbors.keys()

    def depth_first_search(self,root=None):
        order = []
        def dfs(node):
            self.visited[node] = True
            order.append(node)
            for n in self.node_neighbors[node]:
                if not n in self.visited:
                    dfs(n)

        if root in self.nodes():
            dfs(root)

        for node in self.nodes():
            if not node in self.visited:
                dfs(node)

        return order


if __name__ == '__main__':
    g = Graph()
g.add_nodes([i+1 for i in range(8)])
g.add_edge((1, 2))
g.add_edge((1, 3))
g.add_edge((2, 4))
g.add_edge((2, 5))
g.add_edge((4, 8))
g.add_edge((5, 8))
g.add_edge((3, 6))
g.add_edge((3, 7))
g.add_edge((6, 7))
print "Original nodes: ", g.nodes()

order = g.depth_first_search(1)
print "Depth-First-Search order: ", order

运行结果:

Original nodes: [1, 2, 3, 4, 5, 6, 7, 8]
Depth-First-Search order: [1, 2, 4, 8, 5, 3, 6, 7]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值