基于主机复制技术的自我蜕变

  数据复制技术是容灾方案设计中最基本也是最为核心的技术之一,作为一种主流的数据复制方式——基于主机的复制已经在IT领域行走多年,很遗憾,笔者无法给出基于主机的复制技术具体出现的时间,也许从50年前,灾备技术兴起的时候。不过,好在今天我们不是说过去,而是说现在和将来。

  在具体产品上,基于主机的复制软件运行在服务器上,所以区别于基于存储阵列和网络的复制,它不依赖于额外的硬件,支持多种类型的存储方案,包括网络存储(NAS)和直连存储(DAS),即使在异构存储系统上也可以轻松部署。此外,基于主机的复制只需要在源系统和目标系统的主机上安装复制软件,使用起来相对更加简便。这些优点都使得基于主机的复制技术被众多的灾备产品及市场所追捧。

  不过,任何一种技术都不可能是完美无瑕的,多年来,关于主机复制技术的诟病主要体现在以下几种:

  增加了服务器的开销

  随着服务器的数量的增加,软件许可费用和系统管理复杂度的增加

  支持Windows,对Linux和Unix的支持还比较薄弱

  但值得庆幸的是,技术总是需要不断演进迭代的。基于主机的复制技术也正在经历着自我的蜕变,就像我们今天要说的字节级复制技术:

  1、让服务器更轻松:

  英方独有的字节级数据捕获与复制技术在实施过程中,首先会做初始化的数据镜像,然后通过核心的复制引擎,开始旁路监听所有文件系统的写操作,例如rename、setattr等,都能准确的捕获,并通过数据序列化传输技术(Data Order Transfer,简称DOT)异步传输到灾备端,完成整个数据的捕获和复制过程。

  关键点在于,字节级复制的核心引擎工作时,并没有复杂的数学运算,对生产机计算资源占用可以忽略,仅仅是旁路捕获数据而,另外,所有的数据都是从内存中捕获,并不涉及生产主机存储的读取操作,因此数据复制过程不占用主机的存储IO资源。

  2、管理更高效:

  在灾备的逐渐云端化的趋势下,英方首创“灾备全生态”的理念,以生态的角度去统一管理具体的灾备应用,尤其是V6.0的发布,将使得基于主机的复制技术在成本、效率、带宽限流、管理功能、高可用性切换等方面进一步提升对整个系统的管理能力。

  3、多平台运行:

  双活、两地三中心等灾备模式不仅需要用户考虑诸等多现有系统架构问题,同时需要担心后端操作系统的兼容性问题。目前,英方的灾备全生态的各个产品均支持Windows / Linux / Unix平台下的数据保护,通过简易的设置,即可以实现数据、应用、业务的多维度灾备。此外,对于火热的Docker、OpenVZ等开源项目,英方的灾备全生态产品同样适用。

 

  经过不断的发展,灾难恢复和数据保护正在融合为一个有机的整体,比如云、比如超融合等新的业务模式。复制技术逐渐成为一个完善的功能,而不再一个独立的产品。将传统的备份和复制功能结合起来、用生态等角度去纵观整个灾备业务的最大优势,是能够使用统一的工具来管理备份和复制,进而解决复杂的系统管理所带来的问题。

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值