分类器
一叶_障目
知识——即要深,也要广
展开
-
朴素贝叶斯分类器(修改版)
贝叶斯决策论 在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。 假设有N种可能的类别标记,即Y={c1,c2,...,cN},λijY=\{c_1,c_2,...,c_N\},\lambda_{ij} 是将一个真实标记为cjc_j的样本误分类为cic_i所产生的损失。基于后验概率P(ci|x)P(c_i|x)可获得样本xx分类为c原创 2018-01-02 21:50:00 · 709 阅读 · 0 评论 -
主成分分析(PCA)原理详解
转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401一、PCA简介1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会。 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的转载 2017-03-30 16:24:59 · 794 阅读 · 0 评论 -
主成分分析
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。当然我并不打算把文章转载 2017-03-30 17:06:13 · 876 阅读 · 0 评论 -
朴素贝叶斯分类器
贝叶斯决策论 在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。 假设有N种可能的类别标记,即Y={c1,c2,...,cN},λijY=\{c_1,c_2,...,c_N\},\lambda_{ij} 是将一个真实标记为cjc_j的样本误分类为cic_i所产生的损失。基于后验概率P(ci|x)P(c_i|x)可获得样本xx分类为c原创 2017-12-28 11:09:46 · 685 阅读 · 0 评论