python朴素贝叶斯实现-1( 贝叶斯定理,全概率公式 )

朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理特征条件独立假设的分类方法

在研究朴素贝叶斯 之前,先回顾下:概率论中的条件概率以及贝叶斯定理

本部分内容基本来源于 盛骤, 谢式千, 潘承毅《概率论与数理统计 第四版浙江大学》


1. 条件概率(conditional probability)


这里写图片描述

这里写图片描述

下面给出一个例题:

这里写图片描述


2. 全概率公式与贝叶斯定理

这里写图片描述

这里写图片描述

这里写图片描述

下面在给出个示例:

这里写图片描述

这里写图片描述

另外一个示例

这里写图片描述

以上内容基本来源于教材,完成上面的示例,以及习题之后更能够加深对朴素贝叶斯定理的理解。当然内容也不难,只不过时间长了,大多数都忘记了,可以做回顾之用。

参考:

盛骤, 谢式千, 潘承毅《概率论与数理统计 第四版浙江大学》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值