下面给出sklearn 库线性回归示例
# coding:utf-8
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.linear_model import LinearRegression
sns.set()
def get_data():
rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
# plt.scatter(x, y)
# plt.show()
return x, y
def lr_fit():
x, y = get_data()
model = LinearRegression(fit_intercept=True)
model.fit(x[:, np.newaxis], y)
xfit = np.linspace(0, 10, 1000)
yfit = model.predict(xfit[:, np.newaxis])
print "Model slope: ", model.coef_[0]
print "Model intercept:", model.intercept_
plt.scatter(x, y)
plt.plot(xfit, yfit)
plt.show()
if __name__ == '__main__':
lr_fit()
# get_data()
pass
参考:
- Python Data Science Handbook