自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 论文2:时态知识图谱补全的方法及其进展

该模型对时态知识图谱及查询分别进行预训练,完成时态信息与实体表示向量的融合,并计算其邻居的注意力分布,然后利用子图采样的方法获得每个实体及与查询相关的邻居的子图结构,过滤与查询不相关的实体,再利用图神经网络模型,更新子图上实体的表示向量并结合基于路径遍历的方法更新实体邻居的注意力分布,最后依据最高概率推理出实体间隐藏的关系。相对于第一类方法,基于序列学习的方法更加强调不同实体和关系间的历史关系,即实体或关系之间带有时间戳的序列之间的交互。(本文总结目前时序知识图谱的补全方法,以及不同方法之间的对比分析。..

2022-08-29 19:11:08 1755 2

原创 论文一:基于实体多元编码的时序知识图谱推理_彭成

本文将在时间戳t 的事件集合表示为该时间戳的子知识图谱Gt,时间戳用于表示子知识图谱Gt 或事件的相对顺序,如公式所示。其中, 时间戳是一个离散的整数集合,每个数据集相邻时间戳之间的时间间隔是固定值,如 ICEWS18 中两个时间戳的时间间隔为24小时,则其时间戳为{0,24,48,72, ¼¼}。(1)实体的切片特征表示当前时间戳内的实体信息,指在当前时刻与该实体相关的事实知识所包含的实体特征。(2)实体的动态特征表示实体随时间而变化的信息,指实体在不同时间戳上包含与时间戳信息相关的特征。......

2022-08-28 21:58:52 1359

转载 实体关系抽取综述

信息抽取(information extraction,IE)是从给定的文本库中以结构化的形式(如XML)输出特定的信息。一般而言,信息抽取的对象有三类(1)命名实体(named entities)(2)关系(relations)(3)事件(events)一个关系通常就是指一个两个或更多NE间良定的(有意义的)关系。RE面临着很多挑战(1)域和域(domain-to-domain)之间有非常多的可能存在的关系,而且有很多非二元关系(2)有监督的机器学习技术缺乏充分的训练数据。...

2022-08-28 21:42:50 2299

原创 Python之CSV文件处理

1、文件加载及读取import pandas as pddf = pd.read_csv("济南市\学校\济南市标准化学校申报_0.csv",encoding="gbk")print(df.head())(1)df.head()----显示文件的前5行(2)df.head(10)----显示文件的前10行(3)df.info()----显示表格的基本信息(4)df.tail()----显示文件的后5行数据(5)df.tail(10)----显示文件的后10行数据一共有337

2022-08-28 21:23:07 1882

转载 知识图谱补全模型与超参数整理

本篇整理几种常见的知识图谱补全模型的原理以及对应的超参数。

2022-08-28 21:16:43 962

转载 知识图谱推理论文阅读(四)Learning to Walk across Time for Interpretable Temporal Knowledge Graph Completion

接下来,在每个解码步骤t=1,...,T,从 GKG 中迭代地采样一个子图 Gsub(t) ,子图中只包含了查询相关的节点和边。使用 hi 和 gi(t) ,注意力流计算转移概率去将每个节点的注意力值传播到它可以到达的邻居节点上,以得到下一步的节点注意力分布 ai(t+1)。在最后的传播步骤,输入查询的答案可以被推理出,为具有最高注意力值 aiT 的节点。最初,查询节点的权重值是1,其他实体都是0,之后,在步骤t,权重流传播边权重 a~ij(t) 并且将它们聚合到节点权重 ()aj(t) 上。......

2022-08-28 21:12:41 583

转载 知识图谱推理论文阅读(三)QUERY2BOX: REASONING OVERKNOWLEDGE GRAPHS INVECTOR SPACE USING BOX EMBEDDINGS

因为一个复杂的查询表示它的答案实体是一个潜在的大集合,但将这个集合表示为单个点是不太清楚的。此外,之前的工作只能处理使用合取(∧)和存在量词(∃)的查询。其中,Cen⁡(p)∈Rd 是盒子的中心, Off⁡(p)∈R≥0d 是盒子的正偏移,建模了盒子的尺寸大小。最近,解决这个问题的一种很有前景的方法是将KG实体和查询嵌入到向量空间中,这样回答查询的实体就嵌入到查询附近。即outside距离与这个实体和box的最近的角落有关,inside距离取决于box的中心和这个实体的位置本身(如果实体在盒子里的话)。..

2022-08-28 21:04:27 395

转载 知识图谱推理论文阅读(二)Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning

话不多说,直接上手写笔记。

2022-08-28 21:01:01 826 1

转载 知识图谱推理论文阅读(一)DeepPath

论文原文DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning发表时间2017我们研究了大规模知识图中的推理学习问题。更具体地说,我们描述了一种新的用于学习多跳关系路径的强化学习框架:我们使用基于知识图嵌入的连续状态的基于策略的agent,它通过抽样最有希望的关系来扩展其路径,在KG向量空间中进行推理。与之前的工作不同,我们的方法包括一个考虑准确性、多样性和效率的奖励功能。在Freebase和Never-Ending的语

2022-08-28 20:58:03 1915

转载 时序知识图谱补全论文整理:Ⅰ

有了时序知识图谱的概念之后,就可以根据静态知识图谱补全任务来延伸得到时序知识图谱补全的定义。静态知识图谱补全任务:对于$\mathcal{G}={\mathcal{E}\times\mathcal{R}\times \mathcal{G}}={(h, r, t)}$, 给出新的三元组 $(h, r,?)$ 预测尾部实体,或者给出$(?, r, t)$预测头部实体。在实际评估的时候,会把预测问题建模为对实体集合$\mathcal{E}$中所有实体进行打分的问题。............

2022-08-28 20:34:58 1707

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除