一、概览
1.1 平台对比
sharding-jdbc | mycat | |
---|---|---|
性能 | 损耗低 | 损耗略高 |
连接消耗数 | 高 | 低 |
应用场景限制 | java应用 | 无 |
是否支持自定义sharding路由 | 是 | 是 |
路由维度 | 2 | 1 |
分布式事务 | xa、seata分布式事务 | XA分布式事务 |
无中心化 | 是 | 否 |
1.2 简介
ShardingSphere-JDBC定位为轻量级 Java 框架,在 Java 的 JDBC 层提供的额外服务。 它使用客户端直连数据库,以 jar 包形式提供服务,无需额外部署和依赖,可理解为增强版的 JDBC 驱动,完全兼容 JDBC 和各种 ORM 框架。
- 适用于任何基于 JDBC 的 ORM 框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template 或直接使用 JDBC。
- 支持任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP 等。
- 支持任意实现 JDBC 规范的数据库,目前支持 MySQL,Oracle,SQLServer,PostgreSQL 以及任何遵循 SQL92 标准的数据库。
1.3 分库分表场景
随着时间和业务的发展,造成表里面的数据越来越多,如果再去对数据库表curd操作,很容易造成性能问题。为了解决由于数据量过大而造成数据库性能降低的问题,常见的解决方案如下:
- 从硬件上增加数据库服务器的存储,
- 分库分表处理
分库分表又可以分为水平分表、水平分库、垂直分表、垂直分库
水平分表
- 特点:
每个表的结构都一样;
每个表的数据都不一样,没有交集;
所有表的并集是该表的全量数据; - 场景:单表的数据量过大或增长速度很快,已经影响或即将会影响SQL查询效率,加重了CPU负担,提前到达瓶颈。
水平分库
- 特点:
每个库的结构都一样;
每个库的数据都不一样,没有交集;
所有库的并集是全量数据; - 场景:系统绝对并发量上来了,一个数据库已经不能够及时处理所有的业务请求了,必须将数据库请求进行分摊处理.
垂直分表
- 特点:
每个表的结构都不一样;
每个表的数据也不一样,
有一个关联字段,一般是主键或外键,用于关联兄弟表数据;
所有兄弟表的并集是该表的全量数据; - 场景:
有几个字段属于热点字段,更新频率很高,要把这些字段单独切到一张表里,不然innodb行锁很恶心的
有大字段,如text,存储压力很大,毕竟innodb数据和索引是同一个文件;同时,我又喜欢用SELECT *,你懂得,这磁盘IO消耗的,跟玩儿似的,谁都扛不住的。
垂直分库
通常是业务并发量大,需要把新的业务模块或集成公共模块拆分出去 。
1.4 非分片表处理方法
我们知道分库分表是针对某些数据量持续大幅增长的表,比如用户表、订单表等,而不是一刀切将全部表都做分片。那么不分片的表和分片的表如何划分,一般有两种解决方案。
- 严格划分功能库,分片的库与不分片的库剥离开,业务代码中按需切换数据源访问
- 默认数据源,以 Sharding-JDBC 为例,不给未分片表设置分片规则,它们就不会执行,因为找不到路由规则,如果我们设置一个默认数据源,在找不到规则时一律访问默认库。
# 配置数据源 m1
spring.shardingsphere.datasource.name=m1
spring.shardingsphere.datasource.m1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.m1.driverClassName=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.m1.url=jdbc:mysql://xxxx:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&tinyInt1isBit=false&useSSL=false&serverTimezone=GMT
spring.shardingsphere.datasource.m1.username=root
spring.shardingsphere.datasource.m1.password=xxxx
# 默认数据源,未分片的表默认执行库
spring.shardingsphere.sharding.default-data-source-name=m1
1.5 技术栈
- SpringBoot 2.3.8.RELEASE
- MyBatis-Plus3.4.0
- Sharding-JDBC4.x
- Druid连接池
二、核心概念、执行流程、使用规范
开始整合之前最好先去阅读官方网站 了解一些基本概念和执行流程。
核心概念:https://shardingsphere.apache.org/document/current/cn/features/sharding/concept/
执行流程:https://shardingsphere.apache.org/document/current/cn/features/sharding/principle/
使用规范:https://shardingsphere.apache.org/document/current/cn/features/sharding/use-norms/sql/
三、 项目整合
demo地址:https://github.com/HLDBanana/shardingjdbc
3.1 pom.xml
<!-- shardingjdbc依赖包 -->
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>4.1.1</version>
</dependency>
<!-- 连接池 -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.2.5</version>
</dependency>
<!-- 分布式事务所需包 -->
<!-- 使用 XA 事务时,需要引入此模块 -->
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-transaction-xa-core</artifactId>
<version>4.1.1</version>
</dependency>
<!-- <!– 使用 BASE 事务时,需要引入此模块 –>-->
<!-- <dependency>-->
<!-- <groupId>org.apache.shardingsphere</groupId>-->
<!-- <artifactId>sharding-transaction-base-seata-at</artifactId>-->
<!-- <version>4.1.1</version>-->
<!-- </dependency>-->
<!-- <!– https://mvnrepository.com/artifact/io.seata/seata-core –>-->
<!-- <dependency>-->
<!-- <groupId>io.seata</groupId>-->
<!-- <artifactId>seata-core</artifactId>-->
<!-- <version>1.4.2</version>-->
<!-- </dependency>-->
注意:如果原有项目引入了 druid包 以及多数据源包dynamic-datasource-spring-boot-starter,需要注释掉相关引用
<!-- https://mvnrepository.com/artifact/com.baomidou/dynamic-datasource-spring-boot-starter -->
<!-- <dependency>-->
<!-- <groupId>com.baomidou</groupId>-->
<!-- <artifactId>dynamic-datasource-spring-boot-starter</artifactId>-->
<!-- <version>3.1.0</version>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>com.alibaba</groupId>-->
<!-- <artifactId>druid-spring-boot-starter</artifactId>-->
<!-- </dependency>-->
3.2 jpa/mybatis项目其他调整
- springboot启动类增加如下配置
@SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class})
- 分片表ORM映射实体类注释表名映射
- 数据库链接账号赋予分布式事务XA权限
GRANT XA_RECOVER_ADMIN ON *.* TO root@'%'
- 配置springboot数据源健康检查sql(可选)
package com.yss.datamiddle.config;
import org.springframework.beans.factory.ObjectProvider;
import org.springframework.boot.actuate.autoconfigure.jdbc.DataSourceHealthContributorAutoConfiguration;
import org.springframework.boot.actuate.health.AbstractHealthIndicator;
import org.springframework.boot.actuate.jdbc.DataSourceHealthIndicator;
import org.springframework.boot.jdbc.metadata.DataSourcePoolMetadataProvider;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.lookup.AbstractRoutingDataSource;
import org.springframework.util.StringUtils;
import javax.sql.DataSource;
import java.util.Map;
/**
* @description: 重写健康检查sql,解决项目启动健康检查异常
* @author: Han LiDong
* @create: 2021/5/28 14:40
* @update: 2021/5/28 14:40
*/
@Configuration
public class DataSourceHealthConfig extends DataSourceHealthContributorAutoConfiguration {
private static final String defaultQuery = "select 1";
public DataSourceHealthConfig(Map<String, DataSource> dataSources, ObjectProvider<DataSourcePoolMetadataProvider> metadataProviders) {
super(dataSources, metadataProviders);
}
@Override
protected AbstractHealthIndicator createIndicator(DataSource source) {
DataSourceHealthIndicator indicator = (DataSourceHealthIndicator) super.createIndicator(source);
if (!StringUtils.hasText(indicator.getQuery())) {
indicator.setQuery(defaultQuery);
}
return indicator;
}
}
- 分布式事务管理配置
package com.yss.datamiddle.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.DataSourceTransactionManager;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;
import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
/**
* @description:
* @author: Han LiDong
* @create: 2021/6/1 11:16
* @update: 2021/6/1 11:16
*/
@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {
// 创建事务管理器(jpa)
@Bean(name = "transactionManager")
public PlatformTransactionManager txManager(EntityManagerFactory dataSource) {
return new JpaTransactionManager(dataSource);
}
//创建事务管理器(mybatis)
// @Bean(name = "transactionManager")
// public PlatformTransactionManager txManager(final DataSource dataSource) {
// return new DataSourceTransactionManager(dataSource);
// }
@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {
return new JdbcTemplate(dataSource);
}
}
四、分库分表实现
4.1 水平分表-单分片键(标准分片算法、自定义分布式主键生成算法)
创建表单course_1,course_2
约定规则:如果添加的主键ID是偶数把数据添加进course_1表,如果是奇数添加进course_2表
-- ----------------------------
-- Table structure for course_1
-- ----------------------------
DROP TABLE IF EXISTS `course_1`;
CREATE TABLE `course_1` (
`id` bigint(20) NOT NULL,
`name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '课程名称',
`status` int(255) DEFAULT NULL COMMENT '状态',
`create_time` date DEFAULT NULL COMMENT '创建日期',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
-- ----------------------------
-- Table structure for course_2
-- ----------------------------
DROP TABLE IF EXISTS `course_2`;
CREATE TABLE `course_2` (
`id` bigint(20) NOT NULL,
`name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '课程名称',
`status` int(255) DEFAULT NULL COMMENT '状态',
`create_time` date DEFAULT NULL COMMENT '创建日期',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
application-table-horizontal.yml配置分表规则
#水平分表配置
spring:
main:
#允许名称相同的bean的覆盖(一个实体类对应多张表)
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔(m1,m2)
names: m1
#names定义的数据源名称作为key(key不能包含下划线,否则无法识别配置)
m1:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
password: xxxx
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
# rules:
sharding:
tables:
course:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SNOWFLAKE
# 由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式。缺省表示使用已知数据源与逻辑表名称生成数据节点,用于广播表(即每个库中都需要一个同样的表用于关联查询,多为字典表)或只分库不分表且所有库的表结构完全一致的情况
actual-data-nodes: m1.course_$->{1..2}
#分库策略:单分片键
table-strategy:
inline:
#分片键
sharding-column: id
#数据分片规则(ID是偶数把数据添加入course_1,奇数入course_2)
algorithm-expression: course_$->{id % 2 + 1}
测试-分表-新增
/**
* 测试分表-新增
*/
@Test
public void addCourse() {
for (int i = 0; i < 10; i++) {
Course course = new Course();
course.setName("java" + i);
course.setStatus(1);
course.setCreateTime(new Date());
courseMapper.insert(course);
}
}
测试-分表-查询
/**
* 查询分表数据
*/
@Test
public void findCourse() {
//分区字段查询数据:精准匹配分片表,不会去别的表中扫描数据
Course course = courseMapper.selectById(Long.valueOf("607168187053637632"));
log.info(course.toString());
//非分区字段查询:全表匹配,汇总结果
QueryWrapper<Course> queryWrapper2 = new QueryWrapper<Course>();
queryWrapper2.between("create_time",
DateUtil.stringToDate("2021-01-26 11:39:05"),
DateUtil.stringToDate("2021-07-26 11:39:05"));
List<Course> list2 = courseMapper.selectList(queryWrapper2);
log.info("数据量{}",list2.size());
}
由上可以看出分片字段作为查询条件时,请准定位分片数据所在分片表。非分片字段查询时,全表匹配,汇总结果
- 自定义分布式主键生成算法
实现ShardingKeyGenerator接口,自定义分布式主键生成算法
import lombok.Data;
import lombok.Getter;
import lombok.Setter;
import org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator;
import org.springframework.stereotype.Component;
import java.util.Properties;
import java.util.concurrent.atomic.AtomicLong;
/**
* @description: 自定义sharding-jdbc主键生成算法
* @author: Han LiDong
* @create: 2021/5/25 09:36
* @update: 2021/5/25 09:36
*/
@Component
public class SimpleShardingKeyGenerator implements ShardingKeyGenerator {
private AtomicLong atomic = new AtomicLong(0);
@Getter
@Setter
private Properties properties = new Properties();
/**
* 分布式主键实现算法。
*/
@Override
public Comparable<?> generateKey() {
return atomic.incrementAndGet();
}
@Override
public String getType() {
//声明类型,需要在配置文件中配置此key
return "SIMPLE";
}
}
resources下配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator
配置主键生成策略为自定义key
4.2 水平分表-单分片键-按照月份分表(标准分片算法)
创建course_202101到course_202108表单
约定规则:按照创建时间对应的yyyyMM将数据分片到不同的表中
-- ----------------------------
-- 表名自己调整,创建202101-202112的表单
-- ----------------------------
DROP TABLE IF EXISTS `course_202101`;
CREATE TABLE `course_202101` (
`id` bigint(20) NOT NULL,
`name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '课程名称',
`status` int(255) DEFAULT NULL COMMENT '状态',
`create_time` datetime(0) DEFAULT NULL COMMENT '创建日期',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
application-table-time-horizontal.yml配置月份分表规则
#按照月份自定义水平分表策略配置
spring:
main:
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔
names: m1
m1:
password: xxxx
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
# rules:
sharding:
tables:
course:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
type: SNOWFLAKE
##配置 t_order 表规则 ->{a..b} a必须存在,否则分布式主键无法获取
actual-data-nodes: m1.course_$->{2021..2200}0$->{1..9},m1.course_$->{2021..2200}$->{10..12}
table-strategy:
standard:
#精确分片算法类名称,用于 = 和 IN。该类需实现PreciseShardingAlgorithm 接口并提供无参数的构造器
precise-algorithm-class-name: com.xlhj.sharding.config.CoursePreciseShardingAlgorithm
# 范围分片算法类名称,用于 BETWEEN,可选。该类需实现RangeShardingAlgorithm 接口并提供无参数的构造器
range-algorithm-class-name: com.xlhj.sharding.config.TableRangeShardAlgorithm
# 分片字段
sharding-column: create_time
精准分片算法实现
package com.xlhj.sharding.config;
import com.xlhj.sharding.util.DateUtil;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import org.springframework.stereotype.Component;
import java.util.Collection;
import java.util.Date;
/**
* @description: 精准分片算法类
* @author: Han LiDong
* @create: 2021/5/25 10:32
* @update: 2021/5/25 10:32
*/
@Component
public class CoursePreciseShardingAlgorithm implements PreciseShardingAlgorithm<Date> {
/**
* 按照 tablename_yyyyMM进行分表 用于 = in等
* @param collection
* @param preciseShardingValue
* @return
*/
@Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Date> preciseShardingValue) {
StringBuffer tableName = new StringBuffer();
tableName.append(preciseShardingValue.getLogicTableName())
.append("_").append(DateUtil.dateToString(preciseShardingValue.getValue(),"yyyyMM");
return tableName.toString();
}
}
范围分片算法实现
package com.xlhj.sharding.config;
import com.google.common.collect.Range;
import com.xlhj.sharding.util.DateUtil;
import org.apache.shardingsphere.api.sharding.standard.RangeShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.RangeShardingValue;
import org.springframework.stereotype.Component;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.*;
import java.util.stream.Collectors;
/**
* @description: 范围分片算法类 用于 BETWEEN等
* @author: Han LiDong
* @create: 2021/5/25 10:32
* @update: 2021/5/25 10:32
*/
@Component
public class TableRangeShardAlgorithm implements RangeShardingAlgorithm<Date> {
private static SimpleDateFormat sf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
/**
* 分片键日期范围包含分片表名称集合
* @param availableTargetNames
* @param rangeShardingValue
* @return
*/
public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) {
System.out.println("范围-*-*-*-*-*-*-*-*-*-*-*---------------" + availableTargetNames);
System.out.println("范围-*-*-*-*-*-*-*-*-*-*-*---------------" + rangeShardingValue);
//物理表名集合
//Collection<String> tables = new LinkedHashSet<>();
//逻辑表名
String logicTableName = rangeShardingValue.getLogicTableName();
//分片键的值
Range<Date> valueRange = rangeShardingValue.getValueRange();
Date lowerEndpoint = valueRange.lowerEndpoint();
Date upperEndpoint = valueRange.upperEndpoint();
List<String> YMList = DateUtil.getYMBetweenDate(lowerEndpoint,upperEndpoint);
List<String> tables = YMList.stream().map( ym ->{
return logicTableName + "_" + ym;
}).collect(Collectors.toList());
return tables;
}
}
测试-日期分表-新增
/**
* 测试分表
*/
@Test
public void addCourse() {
for (int i = 0; i < 10; i++) {
Course course = new Course();
course.setName("java" + i);
course.setStatus(1);
course.setCreateTime(new Date());
courseMapper.insert(course);
}
}
4.3 水平分表-多分片键(复合分片算法)
继续使用course_1、course_2表单
约定规则:如果添加的主键ID是偶数把数据添加进course_1表,如果是奇数添加进course_2表
application-table-horizontal-columns.yml配置多分片键分表规则
#水平分表配置
spring:
main:
#允许名称相同的bean的覆盖(一个实体类对应多张表)
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔
names: m1
# names定义的数据源名称作为key(key不能包含下划线,否则无法识别配置)
m1:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
password: xxxx
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
sharding:
tables:
# 表名
course:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SIMPLE
#由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式。
#缺省表示使用已知数据源与逻辑表名称生成数据节点,用于广播表(即每个库中都需要一个同样的表用于关联查询,多为字典表)或只分库不分表且所有库的表结构完全一致的情况
actual-data-nodes: m1.course_$->{1..2}
#分片策略:多分片键
table-strategy:
complex:
# 分片键
sharding-columns: id,status
# 自定义分片算法
algorithm-class-name: com.xlhj.sharding.config.CourseShardingAlgorithmColumns
自定义分片算法实现
package com.xlhj.sharding.config;
import org.apache.shardingsphere.api.sharding.complex.ComplexKeysShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.complex.ComplexKeysShardingValue;
import org.springframework.stereotype.Component;
import java.util.*;
/**
* @description: 分表算法类-多分片键
* @author: Han LiDong
* @create: 2021/5/25 10:32
* @update: 2021/5/25 10:32
*/
@Component
public class CourseShardingAlgorithmColumns implements ComplexKeysShardingAlgorithm {
/**
*
* @param collection 分片表名
* @param shardingValues 分片字段值
* @return
*/
@Override
public Collection<String> doSharding(Collection collection, ComplexKeysShardingValue shardingValues) {
System.out.println("collection:" + collection + ",shardingValues:" + shardingValues);
Map<String, Collection> map = shardingValues.getColumnNameAndShardingValuesMap();
Collection<Long> idValues = map.get("id");
Collection<Integer> statusValues = map.get("status");
List<String> shardingSuffix = new ArrayList<>();
//逻辑还是按照 id%2 + 1进行数据分片
for (Long id : idValues) {
Long suf = id % 2 + 1;
for (Object s : collection) {
String tableName = (String) s;
// 分片表名后缀匹配
if (tableName.endsWith(String.valueOf(suf))) {
shardingSuffix.add(tableName);
}
}
}
return shardingSuffix;
}
}
测试-多分片键-新增
/**
* 测试分表-新增
*/
@Test
public void addCourse() {
for (int i = 0; i < 10; i++) {
Course course = new Course();
course.setName("java" + i);
course.setStatus(1);
course.setCreateTime(new Date());
courseMapper.insert(course);
}
}
4.4 水平分库+分表-单分片键
另找一个数据库创建表单course_1,course_2
约定规则:根据status=0数据到库1,status=1数据到库2. id为奇数到course_2表,偶数到course_1表
-- ----------------------------
-- 在库2中创建如下表单
-- ----------------------------
DROP TABLE IF EXISTS `course_1`;
CREATE TABLE `course_1` (
`id` bigint(20) NOT NULL,
`name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '课程名称',
`status` int(255) DEFAULT NULL COMMENT '状态 0:失效 1:有效',
`create_time` date DEFAULT NULL COMMENT '创建日期',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
DROP TABLE IF EXISTS `course_2`;
CREATE TABLE `course_2` (
`id` bigint(20) NOT NULL,
`name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '课程名称',
`status` int(255) DEFAULT NULL COMMENT '状态',
`create_time` date DEFAULT NULL COMMENT '创建日期',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
application-database-horizontal.yml配置分库分表规则
#水平分库、分表配置
spring:
main:
#允许名称相同的bean的覆盖
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔
names: m1,m2
m1:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
password: xxxx
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
m2:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-2?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
password: xxxx
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
# rules:
sharding:
tables:
# 表名
course:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SNOWFLAKE
#配置 course 表规则groovy语法 $->{a..b}
actual-data-nodes: m$->{1..2}.course_$->{1..2}
#分库规则
database-strategy:
inline:
#分库字段
sharding-column: status
#数据分库规则
algorithm-expression: m$->{status + 1}
#分表规则
table-strategy:
inline:
#分表字段
sharding-column: id
#数据分表规则
algorithm-expression: course_$->{id % 2 + 1}
测试-分库分表-新增
/**
* 测试水平分库+分表
*/
@Test
public void addCourseDB() {
for (int i = 0; i < 10; i++) {
Course course = new Course();
course.setName("java");
int rand = (int)(Math.random() * 10);
course.setStatus(rand % 2);
course.setCreateTime(new Date());
courseMapper.insert(course);
}
}
4.5 水平分库+分表-Hint分片(强制分片路由)
库2 创建course_yyyyMM相关表单
约定规则:查询/新增数据的时候指定分片路由,强制路由到某张表
-- ----------------------------
-- 库2创建表单,表名自己调整,创建202101-202112的表单
-- ----------------------------
DROP TABLE IF EXISTS `course_202101`;
CREATE TABLE `course_202101` (
`id` bigint(20) NOT NULL,
`name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '课程名称',
`status` int(255) DEFAULT NULL COMMENT '状态',
`create_time` datetime(0) DEFAULT NULL COMMENT '创建日期',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
application-table-hint-horizontal.yml配置强制路由规则
#强制分片路由hint配置
spring:
main:
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔
names: m1,m2
m1:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
password: xxxx
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
m2:
password: xxxx
url: jdbc:mysql://182.92.219.202:3306/sharding_db-2?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
# rules:
sharding:
tables:
course:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SNOWFLAKE
#配置 t_order 表规则 ->{a..b} a必须存在,否则分布式主键无法获取
actual-data-nodes: m1.course_$->{2021..2200}0$->{1..9},m1.course_$->{2021..2200}$->{10..12}
database-strategy:
hint:
# 自定义分库hit分片算法
algorithm-class-name: com.xlhj.sharding.config.DatabaseHintShardingKeyAlgorithm
table-strategy:
hint:
# 自定义分表hit分片算法
algorithm-class-name: com.xlhj.sharding.config.TableHintShardingKeyAlgorithm
自定义强制分库路由算法实现
package com.xlhj.sharding.config;
import com.alibaba.druid.util.StringUtils;
import org.apache.shardingsphere.api.sharding.ShardingValue;
import org.apache.shardingsphere.api.sharding.hint.HintShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.hint.HintShardingValue;
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
/**
* @description:
* @author: Han LiDong
* @create: 2021/5/27 09:53
* @update: 2021/5/27 09:53
*/
@Component
public class DatabaseHintShardingKeyAlgorithm implements HintShardingAlgorithm {
/**
* 自定义Hint 实现算法
* 能够保证绕过Sharding-JDBC SQL解析过程
* @param availableTargetNames
* @param hintShardingValue 不再从SQL 解析中获取值,而是直接通过hintManager.addTableShardingValue("t_order", 1)参数指定
* @return
*/
@Override
public Collection<String> doSharding(Collection availableTargetNames, HintShardingValue hintShardingValue) {
System.out.println("shardingValue=" + hintShardingValue);
System.out.println("availableTargetNames=" + availableTargetNames);
List<String> shardingResult = new ArrayList<>();
Iterator i = availableTargetNames.iterator();
while (i.hasNext()){
String targetName = (String) i.next();
String suffix = targetName.substring(targetName.length() - 1);
if (StringUtils.isNumber(suffix)) {
// hint分片算法的ShardingValue有两种具体类型:
// ListShardingValue和RangeShardingValue
// 使用哪种取决于HintManager.addDatabaseShardingValue(String, String, ShardingOperator,...),ShardingOperator的类型
Iterator j = hintShardingValue.getValues().iterator();
while (j.hasNext()){
Integer value = (Integer) j.next();
if (value % 2 + 1 == Integer.parseInt(suffix)) {
shardingResult.add(targetName);
}
}
}
}
return shardingResult;
}
}
自定义强制分表路由算法实现
package com.xlhj.sharding.config;
import com.alibaba.druid.util.StringUtils;
import org.apache.shardingsphere.api.sharding.hint.HintShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.hint.HintShardingValue;
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
/**
* @description:
* @author: Han LiDong
* @create: 2021/5/27 09:53
* @update: 2021/5/27 09:53
*/
@Component
public class TableHintShardingKeyAlgorithm implements HintShardingAlgorithm {
/**
* 自定义Hint 实现算法
* 能够保证绕过Sharding-JDBC SQL解析过程
* @param availableTargetNames
* @param hintShardingValue 不再从SQL 解析中获取值,而是直接通过hintManager.addTableShardingValue("t_order", 1)参数指定
* @return
*/
@Override
public Collection<String> doSharding(Collection availableTargetNames, HintShardingValue hintShardingValue) {
System.out.println("shardingValue=" + hintShardingValue);
System.out.println("availableTargetNames=" + availableTargetNames);
List<String> shardingResult = new ArrayList<>();
Iterator i = availableTargetNames.iterator();
while (i.hasNext()){
String targetName = (String) i.next();
String suffix = targetName.substring(targetName.length() - 1);
if (StringUtils.isNumber(suffix)) {
// hint分片算法的ShardingValue有两种具体类型:
// ListShardingValue和RangeShardingValue
// 使用哪种取决于HintManager.addDatabaseShardingValue(String, String, ShardingOperator,...),ShardingOperator的类型
Iterator j = hintShardingValue.getValues().iterator();
while (j.hasNext()){
Integer value = (Integer) j.next();
// 匹配月份
Integer month = value % 12 == 0 ? 12 : value;
if (month == Integer.parseInt(suffix)) {
shardingResult.add(targetName);
}
}
}
}
return shardingResult;
}
}
测试-强制路由
/**
* hint分片算法测试
* @throws Exception
*/
@Test
public void shardingHintDB() throws Exception {
HintManager.clear();
HintManager hintManager = HintManager.getInstance();
// 方式1:
// 下面2句话的意思时: 向3号库中的1号 course 表执行sql
// 选择具体的数据库, 3 可以简单理解为: 3号库,如果只有2个库, 那么可以根据2取模+1,落到 2号库上面
hintManager.addDatabaseShardingValue("course", 3);
// 同理:一个数据库中可以有多张courser表, 2 可以理解为: 2月份相关表.
hintManager.addTableShardingValue("course", 2);
// 方式2
// 直接指定对应具体的数据库,会想此库里所有分片表添加数据
//hintManager.setDatabaseShardingValue(0);
Course course = new Course();
course.setName("java");
int rand = (int)(Math.random() * 10);
course.setStatus(rand % 2);
course.setCreateTime(new Date());
courseMapper.insert(course);
HintManager.clear();
}
4.6 垂直分表
单库垂直分表相当于 同一个库的多张表单 通过外键关联。
分库垂直分表相当于多数据源。
这几介绍下单库垂直分表配置:
主要规则:
#垂直分库需要直接指定到库和表
spring.shardingsphere.sharding.tables.sys_user.actual-data-nodes: m2.sys_user
详细配置:
#垂直分表策略配置
spring:
main:
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔
names: m1,m2
m1:
password: xxxx
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
m2:
password: xxxx
url: jdbc:mysql://182.92.219.202:3306/sharding_db-2?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
sharding:
tables:
sys_user:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SNOWFLAKE
#垂直分库 做到专库专表 指定到具体库.具体表
actual-data-nodes: m2.sys_user
4.7 广播表
指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全一致。适用于数据量不大且需要与海量数据的表进行关联查询的场景,例如:字典表。
库1和库2创建字典表t_dict
-- ----------------------------
-- Table structure for t_dict
-- ----------------------------
DROP TABLE IF EXISTS `t_dict`;
CREATE TABLE `t_dict` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`dic_code` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '编码',
`dic_name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '字典名',
`dic_value` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '字典值',
`pcode` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '父编码',
`status` varchar(1) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '0:失效 1:生效',
`dic_sort` varchar(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '排序',
`remarks` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '备注',
`create_time` datetime(0) DEFAULT NULL COMMENT '创建时间',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 604343147190812673 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
配置广播表规则
主要规则:
# 配置广播表表名
spring.shardingsphere.sharding.broadcast-tables: t_dict
详细配置:
#广播表配置
spring:
main:
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔
names: m1,m2
m1:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
password: xxxx
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
m2:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-2?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
driver-class-name: com.mysql.cj.jdbc.Driver
password: xxxx
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
sharding:
tables:
t_dict:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SNOWFLAKE
# 配置广播表
broadcast-tables: t_dict
测试-广播表
/**
* 测试公共表
*/
@Test
public void addDict() {
TDict dict = new TDict();
dict.setCreateTime(new Date());
dict.setDicCode("test");
dict.setDicName("test");
dict.setDicSort("1");
dict.setDicValue("test");
dict.setPcode("0");
dict.setStatus("1");
dictMapper.insert(dict);
}
4.8 绑定表
概念:指分片规则一致的主表和子表。例如:course表和 course_detail表,均按照 course_id分片,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大大提升。
举例说明,如果 SQL 为:
select * from course c left join course_detail cd on c.id = cd.course_id where c.id in (10, 11);
在不配置绑定表关系时,假设分片键 course_id将数值 10 路由至第 0 片,将数值 11 路由至第 1 片,那么路由后的 SQL 应该为 4 条,它们呈现为笛卡尔积:
select * from course_1 c left join course_detail_1 cd on c.id = cd.course_id where c.id in (10, 11);
select * from course_1 c left join course_detail_2 cd on c.id = cd.course_id where c.id in (10, 11);
select * from course_2 c left join course_detail_1 cd on c.id = cd.course_id where c.id in (10, 11);
select * from course_2 c left join course_detail_2 cd on c.id = cd.course_id where c.id in (10, 11);
在配置绑定表关系后,路由的 SQL 应该为 2 条:
select * from course_1 c left join course_detail_1 cd on c.id = cd.course_id where c.id in (10, 11);
select * from course_2 c left join course_detail_2 cd on c.id = cd.course_id where c.id in (10, 11);
其中 course 在 FROM 的最左侧,ShardingSphere 将会以它作为整个绑定表的主表。 所有路由计算将会只使用主表的策略,那么 course_detail表的分片计算将会使用 course 的条件。故绑定表之间的分区键要完全相同。
库1创建course_detail_1、course_detail_2表单
-- ----------------------------
-- Table structure for course_detail_1
-- ----------------------------
DROP TABLE IF EXISTS `course_detail_1`;
CREATE TABLE `course_detail_1` (
`id` bigint(20) NOT NULL,
`course_id` bigint(20) DEFAULT NULL COMMENT '课程id',
`remark` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '备注',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
-- ----------------------------
-- Table structure for course_detail_2
-- ----------------------------
DROP TABLE IF EXISTS `course_detail_2`;
CREATE TABLE `course_detail_2` (
`id` bigint(20) NOT NULL,
`course_id` bigint(20) DEFAULT NULL COMMENT '课程id',
`remark` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL COMMENT '备注',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
配置广播表规则
#水平分表配置
spring:
main:
#允许名称相同的bean的覆盖(一个实体类对应多张表)
allow-bean-definition-overriding: true
shardingsphere:
props:
sql:
show: true
datasource:
# 数据源名称,多数据源以逗号分隔
names: m1
# names定义的数据源名称作为key(key不能包含下划线,否则无法识别配置)
m1:
url: jdbc:mysql://182.92.219.202:3306/sharding_db-1?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8
username: root
password: xxxx
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据库连接池类名称 com.alibaba.druid.pool.DruidDataSource com.zaxxer.hikari.HikariDataSource
type: com.alibaba.druid.pool.DruidDataSource
sharding:
tables:
# 表名
course:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SNOWFLAKE
#由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式。
#缺省表示使用已知数据源与逻辑表名称生成数据节点,用于广播表(即每个库中都需要一个同样的表用于关联查询,多为字典表)或只分库不分表且所有库的表结构完全一致的情况
actual-data-nodes: m1.course_$->{1..2}
#分片策略:单分片键
table-strategy:
inline:
#分片键
sharding-column: id
#数据分片规则
algorithm-expression: course_$->{id % 2 + 1}
course_detail:
key-generator:
column: id
#主键生成策略 可选内置的 SNOWFLAKE(雪花算法)/UUID
# 也可以自定义(实现ShardingKeyGenerator,并配置META-INF/services/org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator) SIMPLE
type: SNOWFLAKE
#配置 t_order 表规则 ->{a..b} a必须存在,否则分布式主键无法获取
actual-data-nodes: m1.course_detail_$->{1..2}
table-strategy:
inline:
# 绑定表分片字段要一致(外键字段)
sharding-column: course_id
algorithm-expression: course_detail_$->{course_id % 2 + 1}
# 绑定表规则列表(避免查询笛卡尔积),多套规则使用binding-tables[0],binding-tables[1]...
binding-tables: course_detail,course
注意:绑定表的分区键要一致
测试-绑定表查询(笛卡尔积)
/**
* 绑定表测试(查询笛卡尔积)
*/
@Test
public void bindingTest(){
List<Long> ids = new ArrayList<>();
for (int i = 0; i < 4; i++) {
Course course = new Course();
course.setName("java" + i);
course.setStatus(1);
course.setCreateTime(new Date());
courseMapper.insert(course);
CourseDetail courseDetail = new CourseDetail();
courseDetail.setCourseId(course.getId());
courseDetail.setRemark("备注" + i);
courseDetailMapper.insert(courseDetail);
ids.add(course.getId());
}
List<Course> res = courseMapper.binding(ids);
log.info("查询结果:{}",res.size());
}
首先注释掉绑定表配置,查看关联查询笛卡尔积
# 绑定表规则列表(避免查询笛卡尔积),多套规则使用binding-tables[0],binding-tables[1]...
#binding-tables: course_detail,course
然后打开绑定表配置,查看关联查询是否还有笛卡尔积
# 绑定表规则列表(避免查询笛卡尔积),多套规则使用binding-tables[0],binding-tables[1]...
binding-tables: course_detail,course
4.9 分布式事务XA
默认的 XA 事务管理器为 Atomikos
BASE事务管理器为Seata
配置事务管理器
package com.yss.datamiddle.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.DataSourceTransactionManager;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;
import javax.sql.DataSource;
/**
* @description:
* @author: Han LiDong
* @create: 2021/5/27 11:16
* @update: 2021/5/27 11:16
*/
@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {
@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);
}
@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {
return new JdbcTemplate(dataSource);
}
}
使用分布式事务
@Test
// @Rollback(value = false)
@Transactional
@ShardingTransactionType(TransactionType.XA) // 支持TransactionType.LOCAL, TransactionType.XA, TransactionType.BASE
public void transactionTest() {
Course course = new Course();
course.setName("java");
int rand = (int)(Math.random() * 10);
course.setStatus(rand % 2);
course.setCreateTime(new Date());
courseMapper.insert(course);
Course course1 = new Course();
course1.setName("java");
int rand1 = (int)(Math.random() * 10);
course1.setStatus(rand1 % 2 + 1);
course1.setCreateTime(new Date());
courseMapper.insert(course1);
int a = 1/0;
}
五、踩坑指南
5.1 项目引入shardingjdbc相关包,启动项目报错required a bean named ‘entityManagerFactory’ that could not be found
解决方案:
注释pom中durid、dynamic-datasource-spring-boot-starter引用
<!-- https://mvnrepository.com/artifact/com.baomidou/dynamic-datasource-spring-boot-starter -->
<!-- <dependency>-->
<!-- <groupId>com.baomidou</groupId>-->
<!-- <artifactId>dynamic-datasource-spring-boot-starter</artifactId>-->
<!-- <version>3.1.0</version>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>com.alibaba</groupId>-->
<!-- <artifactId>druid-spring-boot-starter</artifactId>-->
<!-- </dependency>-->
5.2 项目启动报错Failed to configure a DataSource: ‘url’ attribute is not specified and no embedded datasource could be configured.
问题描述:项目引入shardingjdbc包、配置好分片规则之后启动项目报错找不到数据库配置,但是配置文件中明明按照sharding数据源配置规则配置了数据库链接信息。
问题原因:DruidDataSourceAutoConfigure在DynamciDataSourceAutoConfiguration之前,其会注入一个DataSourceWrapper,会在原生的spring.datasource下找url,username,password等。而我们动态数据源的配置路径是变化的。
解决方案二选一
- springboot启动类增加如下配置
@SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class}) - 项目配置文件新增:
# 使用多数据源时要有这个配置,要不然会启动失败。单数据源的时候不要加这个配置。
spring.autoconfigure.exclude = com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceAutoConfigure
5.3 项目启动报错org.springframework.dao.InvalidDataAccessApiUsageException: ConnectionCallback; isValid; nested exception is java.sql.SQLFeatureNotSupportedException: isValid
解决方案:
此问题是Spring Boot 2.3.8数据源健康检查sql为null引起。
解决办法是继承 DataSourceHealthContributorAutoConfiguration 重写 createIndicator 方法
package com.yss.datamiddle.config;
import org.springframework.beans.factory.ObjectProvider;
import org.springframework.boot.actuate.autoconfigure.jdbc.DataSourceHealthContributorAutoConfiguration;
import org.springframework.boot.actuate.health.AbstractHealthIndicator;
import org.springframework.boot.actuate.jdbc.DataSourceHealthIndicator;
import org.springframework.boot.jdbc.metadata.DataSourcePoolMetadataProvider;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.lookup.AbstractRoutingDataSource;
import org.springframework.util.StringUtils;
import javax.sql.DataSource;
import java.util.Map;
/**
* @description: 重写健康检查sql,解决项目启动健康检查异常
* @author: Han LiDong
* @create: 2021/5/28 14:40
* @update: 2021/5/28 14:40
*/
@Configuration
public class DataSourceHealthConfig extends DataSourceHealthContributorAutoConfiguration {
private static final String defaultQuery = "select 1";
public DataSourceHealthConfig(Map<String, DataSource> dataSources, ObjectProvider<DataSourcePoolMetadataProvider> metadataProviders) {
super(dataSources, metadataProviders);
}
@Override
protected AbstractHealthIndicator createIndicator(DataSource source) {
DataSourceHealthIndicator indicator = (DataSourceHealthIndicator) super.createIndicator(source);
if (!StringUtils.hasText(indicator.getQuery())) {
indicator.setQuery(defaultQuery);
}
return indicator;
}
}
5.4 分片表新增数据,但是分片键未赋值导致全表入库数据。
解决方法:分片键必须为非空,否则会全表新增数据。
5.5 项目启动报错Caused by: org.hibernate.AnnotationException: No identifier specified for entity: com.yss.datamiddle.po.PrometheusAlertRecordSummaryPo
解决方法:ORM实体类必须有主键注解 @Id
5.6 Table ‘xxx_sequences’ doesn’t exist
解决方案:分表字段主键生成策略改为:
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name = "id")
private Long id;
5.7 Table ‘tablename’ doesn’t exist
分片表对应ORM映射实体类 去掉表名映射:@TableName(“source”)
5.8 org.springframework.boot.context.properties.source.InvalidConfigurationPropertyNameException: Configuration property name ‘spring.shardingsphere.datasource.monitor_1’ is not valid
解决方案:yml配置key不能包含下划线,调整monitor_1为monitor-1
5.9 报错: Caused by: java.lang.NullPointerException: please config application id within seata.conf file.
原因:使用XA分布式事务,但同时又引入了Base事务相关包
解决方案:注释掉Base事务包
<!-- 使用 BASE 事务时,需要引入此模块 -->
<!-- <dependency>-->
<!-- <groupId>org.apache.shardingsphere</groupId>-->
<!-- <artifactId>sharding-transaction-base-seata-at</artifactId>-->
<!-- <version>4.1.1</version>-->
<!-- </dependency>-->
<!-- <!– https://mvnrepository.com/artifact/io.seata/seata-core –>-->
<!-- <dependency>-->
<!-- <groupId>io.seata</groupId>-->
<!-- <artifactId>seata-core</artifactId>-->
<!-- <version>1.4.2</version>-->
<!-- </dependency>-->
5.10 整合分布式事务之后保存数据报错:No bean named ‘transactionManager’ available: No matching TransactionManager bean found for qualifier ‘transactionManager’
解决方案:调整分布式事务管理器配置为:
package com.yss.datamiddle.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.DataSourceTransactionManager;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;
import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
/**
* @description:
* @author: Han LiDong
* @create: 2021/5/27 11:16
* @update: 2021/5/27 11:16
*/
@Configuration
@EnableTransactionManagement
public class TransactionConfiguration {
// 创建事务管理器
@Bean(name = "transactionManager")
public PlatformTransactionManager txManager(EntityManagerFactory dataSource) {
return new JpaTransactionManager(dataSource);
}
/**
sharding官方提供的配置
@Bean
public PlatformTransactionManager txManager(final DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);
}
*/
@Bean
public JdbcTemplate jdbcTemplate(final DataSource dataSource) {
return new JdbcTemplate(dataSource);
}
}
六、性能测试
id取模分表的话,以后如果需要扩容,比如从三个节点扩容到四个节点,所有节点数据都需要移动,按照时间来进行分组就可以动态扩容,不需要做任何改动。
详情查看sharding 3.x文档:https://shardingsphere.apache.org/document/legacy/3.x/document/cn/manual/sharding-jdbc/stress-test/
- 取模分表性能测试
1200w数据(sql匹配到库1中的三张分表)
双库6表 | 单库单表 | |
---|---|---|
SELECT rd.service_type,count(rd.service_type) AS num,ru.rule_name FROM t_prometheus_alert_record rd LEFT JOIN t_prometheus_alert_rule ru ON ru.id=rd.rule_id WHERE rd.STATUS=0 GROUP BY rd.service_type,ru.rule_name | 10784ms | 20464ms |
SELECT service_id FROM t_prometheus_alert_record WHERE service_type=4 AND STATUS=0 GROUP BY service_id | 58174ms | 39101ms |
- 月份分表性能测试(800w数据)
单库12表 | 单库单表 | |
---|---|---|
SELECT rd.service_type,count(rd.service_type) AS num,ru.rule_name FROM t_prometheus_alert_record rd LEFT JOIN t_prometheus_alert_rule ru ON ru.id=rd.rule_id WHERE rd.create_time> ‘2021-06-01 00:00:00’ AND rd.create_time<=‘2021-06-30 23:59:59’ AND rd.service_type=1 GROUP BY rd.service_type,ru.rule_name | 1748ms | 6134ms |
SELECT service_id FROM t_prometheus_alert_record WHERE service_type=1 AND create_time> 2021-06-01 00:00:00’ AND create_time<=‘2021-06-30 23:59:59’ GROUP BY service_id | 2338ms | 7499ms |
- 月份分表性能测试(1200w数据)
单库12表 | 单库单表 | |
---|---|---|
SELECT rd.service_type,count(rd.service_type) AS num,ru.rule_name FROM t_prometheus_alert_record rd LEFT JOIN t_prometheus_alert_rule ru ON ru.id=rd.rule_id WHERE rd.create_time> ‘2021-06-01 00:00:00’ AND rd.create_time<=‘2021-06-30 23:59:59’ AND rd.service_type=1 GROUP BY rd.service_type,ru.rule_name | 2090ms | 8882ms |
SELECT service_id FROM t_prometheus_alert_record WHERE service_type=1 AND create_time> 2021-06-01 00:00:00’ AND create_time<=‘2021-06-30 23:59:59’ GROUP BY service_id | 2571ms | 10187ms |
- 月份分表性能测试(2000w数据)
单库12表 | 单库单表 | |
---|---|---|
SELECT rd.service_type,count(rd.service_type) AS num,ru.rule_name FROM t_prometheus_alert_record rd LEFT JOIN t_prometheus_alert_rule ru ON ru.id=rd.rule_id WHERE rd.create_time> ‘2021-06-01 00:00:00’ AND rd.create_time<=‘2021-06-30 23:59:59’ AND rd.service_type=1 GROUP BY rd.service_type,ru.rule_name | 3400ms | 16061ms |
SELECT service_id FROM t_prometheus_alert_record WHERE service_type=1 AND create_time> 2021-06-01 00:00:00’ AND create_time<=‘2021-06-30 23:59:59’ GROUP BY service_id | 7799ms | 23216ms |