题目描述
给定一个n*n的矩阵,求该矩阵的k次幂,即P^k。
输入描述:
第一行:两个整数n(2<=n<=10)、k(1<=k<=5),两个数字之间用一个空格隔开,含义如上所示。 接下来有n行,每行n个正整数,其中,第i行第j个整数表示矩阵中第i行第j列的矩阵元素Pij且(0<=Pij<=10)。另外,数据保证最后结果不会超过10^8。
输出描述:
对于每组测试数据,输出其结果。格式为: n行n列个整数,每行数之间用空格隔开,注意,每行最后一个数后面不应该有多余的空格。
示例1
输入
复制
3 2 2 9 8 9 3 3 3 4 8 4 9 3 0 3 5 7 5 2 4 0 3 0 1 0 0 5 8 5 8 9 8 5 3 9 6 1 7 8 7 2 5 7 3
输出
复制
153 96 108 81 1216 1248 708 1089 927 504 1161 1151 739 47 29 41 22 16 147 103 73 116 94 162 108 153 168 126 163 67 112 158 122 152 93 93 111 97
矩阵快速幂仍然用的是快速幂的思想
结果为res,将k转成二进制,如果最后一位是1,则res=res*a;然后a=a*a,k右移一位
还有,样例里边有输入测试样例的个数,但提交代码的时候没有,直接输入的是n和k
#include<iostream>
using namespace std;
struct Matrix {
int matrix[10][10];
int row;
int col;
Matrix(int r,int c):row(r),col(c) {}
};
Matrix Mul(Matrix a,Matrix b) { //矩阵乘法
Matrix res(a.row,b.col);
for(int i=0; i<a.row; i++) {
for(int j=0; j<b.col; j++) {
res.matrix[i][j]=0;
for(int k=0; k<a.col; k++) {
res.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j];
}
}
}
return res;
}
Matrix FastMul(Matrix a,int n,int k) { //快速矩阵幂
Matrix res(n,n);
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
if(i==j) {
res.matrix[i][j]=1;
} else {
res.matrix[i][j]=0;
}
}
}
while(k!=0) {
if(k&1) {
res=Mul(res,a);
}
a=Mul(a,a);
k>>=1;
}
return res;
}
void Print(Matrix a) {
for(int i=0; i<a.row; i++) {
for(int j=0; j<a.col; j++) {
cout<<a.matrix[i][j];
if(j!=a.col-1) {
cout<<" ";
}
}
cout<<endl;
}
}
int main() {
// int t;
// cin>>t;
// while(t--){
int n,k;
cin>>n>>k;
Matrix a(n,n),res(n,n);
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
cin>>a.matrix[i][j];
}
}
res=FastMul(a,n,k);
Print(res);
//把k转化成二进制
// }
return 0;
}