矩阵幂【北京邮电大学复试机试题】

题目描述

给定一个n*n的矩阵,求该矩阵的k次幂,即P^k。

输入描述:

 
第一行:两个整数n(2<=n<=10)、k(1<=k<=5),两个数字之间用一个空格隔开,含义如上所示。
接下来有n行,每行n个正整数,其中,第i行第j个整数表示矩阵中第i行第j列的矩阵元素Pij且(0<=Pij<=10)。另外,数据保证最后结果不会超过10^8。

输出描述:

对于每组测试数据,输出其结果。格式为:
n行n列个整数,每行数之间用空格隔开,注意,每行最后一个数后面不应该有多余的空格。

示例1

输入

复制

3
2 2
9 8
9 3
3 3
4 8 4
9 3 0
3 5 7
5 2
4 0 3 0 1
0 0 5 8 5
8 9 8 5 3
9 6 1 7 8
7 2 5 7 3

输出

复制

153 96
108 81
1216 1248 708
1089 927 504
1161 1151 739
47 29 41 22 16
147 103 73 116 94
162 108 153 168 126
163 67 112 158 122
152 93 93 111 97

矩阵快速幂仍然用的是快速幂的思想 

结果为res,将k转成二进制,如果最后一位是1,则res=res*a;然后a=a*a,k右移一位

还有,样例里边有输入测试样例的个数,但提交代码的时候没有,直接输入的是n和k

#include<iostream>

using namespace std;
struct Matrix {
	int matrix[10][10];
	int row;
	int col;
	Matrix(int r,int c):row(r),col(c) {}
};
Matrix Mul(Matrix a,Matrix b) { //矩阵乘法
	Matrix res(a.row,b.col);
	for(int i=0; i<a.row; i++) {
		for(int j=0; j<b.col; j++) {
			res.matrix[i][j]=0;
			for(int k=0; k<a.col; k++) {
				res.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j];
			}
		}
	}
	return res;
}

Matrix FastMul(Matrix a,int n,int k) {  //快速矩阵幂
	Matrix res(n,n);
	for(int i=0; i<n; i++) {
		for(int j=0; j<n; j++) {
			if(i==j) {
				res.matrix[i][j]=1;
			} else {
				res.matrix[i][j]=0;
			}
		}
	}
	while(k!=0) {
		if(k&1) {
			res=Mul(res,a);
		}
		a=Mul(a,a);
		k>>=1;
	}
	return res;
}
void Print(Matrix a) {
	for(int i=0; i<a.row; i++) {
		for(int j=0; j<a.col; j++) {
			cout<<a.matrix[i][j];
			if(j!=a.col-1) {
				cout<<" ";
			}
		}
		cout<<endl;
	}
}
int main() {
//	int t;
//	cin>>t;
//	while(t--){
	int n,k;
	cin>>n>>k;
	Matrix a(n,n),res(n,n);
	for(int i=0; i<n; i++) {
		for(int j=0; j<n; j++) {
			cin>>a.matrix[i][j];
		}
	}
	res=FastMul(a,n,k);
	Print(res);
	//把k转化成二进制
//	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值