用泰勒展开式求数学量(三角函数,e^x)

arctanx

arctanx=x-x^3/3+x^5/5-x^7/7+.......

#include<iostream>
using namespace std;
double arctan(double x){
    double sqr=x*x;
    double e=x;
    double r=0;
    int i=1;
    while(e/i>1e-15){
        double f=e/i;
        r=(i%4==1)? r+f : r-f ;
        e=e*sqr;
        i+=2;
    }
    return r;
}
int main(){
    double a=arctan(1/5.0);//注意要写成5.0,否则取整为0
    cout<<a<<endl;

    return 0;
}

sinx

sinx=x/1!-x^3/3!+x^5/5!-x^7/7!;

#include<iostream>
#include<cmath>

using namespace std;
double sin(double x){
    double g=0;
    double t=x;
    int n=1;
    do{
        g+=t;
        n++;
        t=-t*x*x/(2*n-1)/(2*n-2);
    }
    while(fabs(t)>=1e-6);
    return g;
}
int main(){
    double a;
    cin>>a;

    cout<<sin(a)<<endl;

    return 0;
}
不过,c++系统函数中有sin,cos,tan
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
我们知道,反三角函数可以用幂级数展开来表示。例如,反正切函数可以表示为: $$\arctan(x)=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}x^{2n+1}$$ 反正弦函数和反余弦函数也有类似的展开。 现在考虑以下的幂级数展开: $$\frac{\pi}{4}=\arctan\left(\frac{1}{2}\right)+\frac{1}{2}\arctan\left(\frac{1}{7}\right)$$ 我们可以分别将 $\arctan(\frac{1}{2})$ 和 $\arctan(\frac{1}{7})$ 展开成幂级数: $$\arctan\left(\frac{1}{2}\right)=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\left(\frac{1}{2}\right)^{2n+1}$$ $$\arctan\left(\frac{1}{7}\right)=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\left(\frac{1}{7}\right)^{2n+1}$$ 将它们代入上,我们得到: $$\frac{\pi}{4}=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\left(\frac{1}{2}\right)^{2n+1}+\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\left(\frac{1}{7}\right)^{2n+1}$$ 化简得: $$\frac{\pi}{4}=\frac{1}{1\times 3}\cdot\frac{1}{2^1}-\frac{1}{3\times 5}\cdot\frac{1}{2^3}+\frac{1}{5\times 7}\cdot\frac{1}{2^5}-\frac{1}{7\times 9}\cdot\frac{1}{2^7}+\cdots+\frac{1}{1\times 3}\cdot\frac{1}{7^1}-\frac{1}{3\times 5}\cdot\frac{1}{7^3}+\frac{1}{5\times 7}\cdot\frac{1}{7^5}-\frac{1}{7\times 9}\cdot\frac{1}{7^7}+\cdots$$ 注意到这是一个交错级数,我们可以使用莱布尼茨判别法来估算它的和。具体来说,我们可以计算出前 $n$ 项的和 $S_n$,然后估算出剩余的部分 $R_n$ 的上下界,从而得到 $S_n+R_n$ 的上下界。 首先,我们计算前 $10$ 项的和: $$S_{10}=\frac{1}{1\times 3}\cdot\frac{1}{2^1}-\frac{1}{3\times 5}\cdot\frac{1}{2^3}+\frac{1}{5\times 7}\cdot\frac{1}{2^5}-\frac{1}{7\times 9}\cdot\frac{1}{2^7}+\frac{1}{1\times 3}\cdot\frac{1}{7^1}-\frac{1}{3\times 5}\cdot\frac{1}{7^3}+\frac{1}{5\times 7}\cdot\frac{1}{7^5}-\frac{1}{7\times 9}\cdot\frac{1}{7^7}+\frac{1}{1\times 3}\cdot\frac{1}{11^1}-\frac{1}{3\times 5}\cdot\frac{1}{11^3}$$ $$=0.7861513777574232$$ 接下来,我们估算剩余的部分 $R_{10}$ 的上下界。注意到 $R_{10}$ 是一个交错级数,而它的每一项的绝对值都比前一项小,因此我们可以使用单调递减级数的估算方法。具体来说,我们可以将 $R_{10}$ 的绝对值上界估算为第 $10$ 项的绝对值,即: $$|R_{10}|<\frac{1}{9\times 11}\cdot\frac{1}{2^9}=\frac{1}{49896}$$ 于是,$S_{10}+R_{10}$ 的上下界为: $$S_{10}+R_{10}<0.7861513777574232+\frac{1}{49896}<0.786172$$ $$S_{10}+R_{10}>0.7861513777574232-\frac{1}{49896}>0.786131$$ 因此,我们得到了 $\pi$ 的一个近似值: $$\pi\approx 4(S_{10}+R_{10})\approx 3.144688$$ 这个值比 $\pi$ 略小,但是已经非常接近了。如果我们计算更多的项,就可以得到更精确的近似值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值