问题1:给出一个序列,求序列的最大连续非空子段和
输入:第一行输入元素的个数,第二行输入n个元素,输出:输出最大连续非空子段和
输入:
7
2 -4 3 -1 2 -4 3
输出:
4
问题分析:先求出来序列的前缀和数组,如果要求元素i到j字段和,就是pre[j]-pre[i],题目要求最大字段和,就用最大前缀和减去最小前缀和
int cnt[maxn];
ll pre[maxn];
ll ans[maxn];
int main()
{
int n;
scanf("%d",&n);
//前缀和数组pre[]
for(int i=1;i<=n;i++){
scanf("%d",&cnt[i]);
pre[i]=pre[i-1]+cnt[i];
}
ans[1]=cnt[1];
ll minn=min((ll)0,pre[1]);
//用每个前缀和减去他前面最小的前缀和得到数组ans[]
for(int i=2;i<=n;i++){
ans[i]=pre[i]-minn;
minn=min(minn,pre[i]);
}
ll res=ans[1];
//得出ans[]数组里最大的元素
for(int i=2;i<=n;i++){
res=max(res,ans[i]);
}
printf("%lld\n",res);
return 0;
}
问题2:给出一段序列,求出这个序列中连续子段和大于等于value的一个最小的子段长度是多少(题目保证给出的所有数据均为正)
输入:第一行输入n和value,第二行输入n个元素,输出:这个序列中连续子段和大于等于value的一个最小的子段长度
输入:
10 15
5 1 3 5 10 7 4 9 2 8
问题分析:先从头部找大于等于value的,然后减去头部,看是否还大于value如果小了就继续往右扩展,在中途更新出最小的子段长度。
#include<iostream>
#include<cstdio>
using namespace std;
int n,value,a[105];
int res;
void solve(){
int sum=0;
res=n+1; //res为子段长
int s=0,t=0; //s为区间的头部指针,t为区间的尾部指针,t
for(;;){
while(t<n&&sum<value)
sum+=a[t++];
//如果找到最后都没有找到sum>=value,说明不存在
if(sum<value)
break;
res=min(res,t-s);
sum-=a[s++]; //去掉头部,如果小于value会进入while循环,再接下来更新res,如果大于value就直接更新res
}
}
int main(){
scanf("%d%d",&n,&value);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
solve();
printf("%d\n",res);
}