克鲁斯卡尔算法

算法流程:知道一个图所有边的权值,从小到大排序,排序以后从头到尾,看这条边连通的点如果不连通,就加上这条边的权值,否则直接跳过

结构体中:u是起点 v是终点 w是边权,

struct edge{
    int u,v,w;
};
edge edges[MAXM];

首先按照边权从小到大排序,将边从小到大开始按照并查集判断联通性,如果不连通,加上此时这条边的边权,这也就意味着这是两点之间的最小路径了,然后合并这两点,如果已经联通呢,就直接跳过

void krusal(int n,int m)
{
    sort(edges,edges+m,cmp);//先排序

    int ans=0,count=0,maxn=0;
    for(int i=0;i<m;i++){
        int u=find(edges[i].u);
        int v=find(edges[i].v);
        if(u!=v){//不连通加上此时的权值
            merge(u,v);
            ans+=edges[i].w;
        }else{//否则跳过即可
            continue;
        }
    }
    printf("%d\n",ans);
}

输出最小生成树的权值。

模板如下:(要注意数组大小)

const int MAXN=2e3+50;
const int MAXM=1e4+50;
void init(){
    for(int i=0;i<=MAXN;i++){
       f[i]=i;
    }
}
struct edge{
    int u,v,w;
};
edge edges[MAXM];

bool cmp(edge a,edge b)
{
    return a.w<b.w;
}

int f[MAXN];
//并查集
int find(int x)
{
    if(x==f[x]){
        return x;
    }else{
        f[x]=find(f[x]);
        return f[x];
    }
}

void merge(int a,int b)
{
    int t1=find(a);
    int t2=find(b);
    if(t1!=t2){
        f[t2]=t1;
    }
    return ;
}
//克鲁斯 卡尔算法
void krusal(int n,int m)
{
    sort(edges,edges+m,cmp);//先排序
    int ans=0,count=0;
    for(int i=0;i<m;i++){
        int u=find(edges[i].u);
        int v=find(edges[i].v);
        if(u!=v){//不连通加上此时的权值
            merge(u,v);
            ans+=edges[i].w;
        }else{//否则跳过即可
            continue;
        }
    }
    printf("%d\n",ans);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值