i为物品索引,X为背包中的剩余容量
1)物品i不放入背包中,解等于从0,1,2 … i-1选取容量为X的物品价值,也就是
Knapsack( i , X ) = Knapsack( i-1 , X )
2)物品i 放入背包中,Knapsack( i , X )的解等于剩余物品 0,1,2 … i-1中选择放入容量为 X-si 的包中的价值+物品i
的价值 vi,也就是Knapsack( i , X ) = Knapsack( i-1 , X -si )+vi
例子中
包容量为10,物品有三个
{s0=3,v0=4},{s1=4,v1=5},{s2=5,v2=6}
def knaspace(S,size,value,n):
K=[[0 for i in range(S+1)] for j in range(n+1)]
print(K)
for i in range(n+1):
for x in range(S+1):
if i==0 or x==0:
K[i][x]=0
elif size[i-1]<=x: #如果可以装进去
K[i][x]=max(value[i-1]+K[i-1][x-size[i-1]],K[i-1][x])
else: #如果装不进去
K[i][x]=K[i-1][x]
return K
if __name__=="__main__":
w=10
size=[3,4,5]
value=[4,5,6]
n=3
print("动态规划表:")
result=knaspace(w,size,value,n)
for list in result:
print(list)