自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

寒小阳

专注机器学习/数据挖掘

原创 ML学习分享系列(1)_计算广告小窥[上]

回顾计算广告的发展历史,纵使错综复杂,但究其根本,便是广告主、媒体与用户之间相互博弈之后达到的平衡状态。在传统广告踏入互联网大门之后,在利益最大化的驱动下,媒体通过受众定向技术引领广告进入合约广告时代;在精细化投放的使命与在线分配的矛盾下,媒体选择竞价方式将计算广告推入了发展的快车道;在广告主个性...

2016-01-25 15:26:09

阅读数 24082

评论数 7

原创 NLP系列(1)_从破译外星人文字浅谈自然语言处理的基础

如果让你破译“三体”人文字你会怎么办?我们试着开一下脑洞:假如你有一个优盘,里面存了大量“三体”人(刘慈欣小说中的高智能外星人)的网络文本信息... 当面对一种一无所知的语言的时候,似乎最直接的方法就是掌握大量的语料库,而且这些语料最好是经过各种方式标注了的。然后对其进行各种各样的统计,发掘一些有...

2016-01-20 00:01:48

阅读数 21371

评论数 1

原创 深度学习与计算机视觉系列(10)_细说卷积神经网络

前面九讲对神经网络的结构,组件,训练方法,原理等做了介绍。现在我们回到本系列的核心:计算机视觉,神经网络中的一种特殊版本在计算机视觉中使用最为广泛,这就是大家都知道的卷积神经网络。卷积神经网络和普通的神经网络一样,由『神经元』按层级结构组成,其间的权重和偏移量都是可训练得到的。同样是输入的数据和权...

2016-01-19 19:27:09

阅读数 66225

评论数 25

原创 深度学习与计算机视觉系列(6)_神经网络结构与神经元激励函数

1.2 单个神经元的分类作用 以sigmoid函数作为神经元的激励函数为例,这个大家可能稍微熟悉一点,毕竟我们逻辑回归部分重点提到了这个非线性的函数,把输入值压缩成0-1之间的一个概率值。而通过这个非线性映射和设定的阈值,我们可以把空间切分开,分别对应正样本区域和负样本区域。而对应回现在的神经元...

2016-01-16 17:57:38

阅读数 50626

评论数 13

原创 深度学习与计算机视觉系列(5)_反向传播与它的直观理解

其实一开始要讲这部分内容,我是拒绝的,原因是我觉得有一种写高数课总结的感觉。而一般直观上理解反向传播算法就是求导的一个链式法则而已。但是偏偏理解这部分和其中的细节对于神经网络的设计和调整优化又是有用的

2016-01-16 17:17:19

阅读数 43159

评论数 13

原创 深度学习与计算机视觉系列(9)_串一串神经网络之动手实现小例子

前面8小节,算从神经网络的结构、简单原理、数据准备与处理、神经元选择、损失函数选择等方面把神经网络过了一遍。这个部分我们打算把知识点串一串,动手实现一个简单的2维平面神经网络分类器,去分割平面上的不同类别样本点。为了循序渐进,我们打算先实现一个简单的线性分类器,然后再拓展到非线性的2层神经网络。我...

2016-01-15 01:01:52

阅读数 26778

评论数 15

原创 深度学习与计算机视觉系列(8)_神经网络训练与注意点

在前一节当中我们讨论了神经网络静态的部分:包括神经网络结构、神经元类型、数据部分、损失函数部分等。这个部分我们集中讲讲动态的部分,主要是训练的事情,集中在实际工程实践训练过程中要注意的一些点,如何找到最合适的参数。

2016-01-15 00:52:01

阅读数 37229

评论数 13

原创 机器学习系列(6)_从白富美相亲看特征预处理与选择(下)

初步划定特征的范围,获取特征 李雷早就想过这个问题了。长期的职业素养让他对任何事情都想用机器学习的方法去鼓捣。李雷的基本思路是这样的,我们尽可能观察螃蟹更多的特征,从中找出与“螃蟹满黄”最相关的特征来,帮助我们去判断。当然特征有非常多,我们可以先头脑风暴一下:

2016-01-12 11:54:51

阅读数 36193

评论数 12

原创 机器学习系列(5)_从白富美相亲看特征预处理与选择(上)

讲机器学习为什么要讲相亲?被讨论群里的小伙伴催着相亲,哦不,催着讲特征工程紧啊。只是我们不太敢讲这么复杂高深的东西,毕竟工程实践的经验太复杂了,没有统一的好解释的理论,一般的教材讲这方面的内容不多。我们就打算以一个相亲的故事为例,串一些特征工程的内容。

2016-01-08 12:20:33

阅读数 30619

评论数 13

原创 机器学习系列(4)_机器学习算法一览,应用建议与解决思路

我们先带着大家过一遍传统机器学习算法,基本思想和用途。把问题解决思路和方法应用建议提前到这里的想法也很简单,希望能提前给大家一些小建议,对于某些容易出错的地方也先给大家打个预防针,这样在理解后续相应机器学习算法之后,使用起来也有一定的章法。 ## 2.机器学习算法简述 按照不同的分类标准,可以把机...

2016-01-06 15:35:17

阅读数 79271

评论数 13

原创 深度学习与计算机视觉系列(7)_神经网络数据预处理,正则化与损失函数

1. 引言 上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。 2. 数据与网络的设定 前一节提到前向计算涉及到的组件(主要是神经元)设定。神经网络结构和参数设定完毕之后,我们就得到得分函数/sc...

2016-01-03 16:43:01

阅读数 57892

评论数 14

提示
确定要删除当前文章?
取消 删除