自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

寒小阳

专注机器学习/数据挖掘

原创 机器学习系列(15)_SVM碎碎念part3:如何找到最优分离超平面

是的,咱们第1篇blog介绍了目标;第2篇blog介绍了向量相关的背景数学知识,看到了如何求解Margin的值;今天这个部分主要目的是和大家一起来看看,选择最优超平面的推理过程。 以下是本篇的一个简短目录: 如何找到最优超平面 如何计算两超平面间的距离 SVM的最优化问题是什么

2016-09-27 18:36:28

阅读数 26358

评论数 5

原创 机器学习系列(14)_SVM碎碎念part2:SVM中的向量与空间距离

第一篇博客part1的部分很短,就说了一个事情,SVM在试图找一个Max Margin(最大间隔)的分离超平面。OK,这个部分要补补基础,复习一下数学,为后面的学习做准备(墙裂建议数学基础好的同学略过此节基础内容...)。咱们来看看SVM涉及到的向量和空间距离。

2016-09-27 11:59:54

阅读数 15169

评论数 4

原创 机器学习系列(13)_SVM碎碎念part1:间隔

欠的总归是要还的,SVM这么神圣的算法是每个学习machine learning的同学可能会头痛却又不得不面对的,即使到现在为止博主这样的Math/CS渣都觉得一定没有领悟到SVM精髓,所以整理了一些边边角角的碎碎念,颤颤巍巍放到这个系列里,算是自己做个总结,也希望能对大家有一点点的帮助。这个SV...

2016-09-27 10:23:23

阅读数 13030

评论数 1

原创 机器学习系列(12)_XGBoost参数调优完全指南(附Python代码)

这篇文章主要讲了如何提升XGBoost模型的表现。首先,我们介绍了相比于GBM,为何XGBoost可以取得这么好的表现。紧接着,我们介绍了每个参数的细节。我们定义了一个可以重复使用的构造模型的函数。 最后,我们讨论了使用XGBoost解决问题的一般方法,在AV Data Hackathon 3.x...

2016-09-25 23:35:50

阅读数 134984

评论数 38

原创 机器学习系列(11)_Python中Gradient Boosting Machine(GBM)调参方法详解

这篇文章详细地介绍了GBM模型。我们首先了解了何为boosting,然后详细介绍了各种参数。 这些参数可以被分为3类:树参数,boosting参数,和其他影响模型的参数。最后我们提到了用GBM解决问题的 一般方法,并且用AV Data Hackathon 3.x problem数据运用了这些方法。

2016-09-25 17:33:34

阅读数 78088

评论数 22

原创 机器学习系列(10)_如何提高深度学习(和机器学习)的性能

我经常被问到诸如`如何从深度学习模型中得到更好的效果`的问题,类似的问题还有:我如何提升准确度,如果我的神经网络模型性能不佳,我能够做什么? 对于这些问题,我经常这样回答,“我并不知道确切的答案,但是我有很多思路”,接着我会列出了我所能想到的所有**或许能够给性能带来提升**的思路,。 为避免...

2016-09-24 23:34:19

阅读数 28826

评论数 2

提示
确定要删除当前文章?
取消 删除