UVa806 习题6-8 空间结构(Spatial Structures,ACM/ICPC World Finals 1998)

原题链接: UVa806

题目大意:

 根据黑白图像的两种表示方法的规则相互转换。

细节:

  1. 输出代表黑色块的数字序列时,每行大于12个要换行。
  2. 输出最后不需要留空行(差点没栽死在这个坑里)

解题思路:

 本题其实可以分为两道题一道是矩阵转化为黑点数字序列,另一道是黑点数字序列转化为矩阵。下面是大体思路,具体细节参考代码。(花了挺长时间才写完的,在细节方面栽了很多坑)


 第一个问题,整体思路就是利用DFS对矩阵进行判断,可以分为三种情况,全白:返回,全黑:计算表示的十进制数字存入set中,又黑又白:继续分割进行DFS。最后将set中的十进制黑点数字序列输出。注意对应NW,NE,SW,SE所在的位置。


 第二个问题,我的思路是,创建一个全0矩阵代表白图,对于每个输入的数字都先将其转化给5进制并且把各位放到一个数组里,然后利用DFS把该数字所对应的区域矩阵全置1,从而涂黑。由于每个数组都要进行一次DFS,而且是是涂完之后在输出,所以时间上可能有所浪费。

遇到问题:

 主要都是些细节方面的问题,但是细节方面才是最烦人的。还有就是前边说的时间上可能有点浪费,写完之后也懒得改了。


代码:

#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<set>

using namespace std;

void matrix_to_num(int r, int c, int len, int dep, int dir, int num);
void num_to_matrix(int r, int c, int len, int dep);
void get_dir(int num);

const int MAXN = 64 + 10;

int matrix[MAXN][MAXN];    //用于存储输入输出矩阵 
set<int> black;			   //用于存储黑块数字序列 
int n, dirs[MAXN];			//dirs:用于存储一个数字代表的5进制的各位数字 

int main()
{
	//freopen("input.txt","r",stdin); 
	//freopen("output.txt","w",stdout); 
	int kase = 0;cin >> n;
	while (n)
	{
		cout << "Image " << ++kase << endl;
		if (n > 0)             	//矩阵转数字 
		{
			getchar();
			black.clear();
			for (int i = 0; i < n; i++)	
			{
				for (int j = 0; j < n; j++)
				{
					char ch = getchar();
					matrix[i][j] = ch - '0';
				}
				getchar();
			}
			matrix_to_num(0, 0, n, 1, 0, 0);  
			int cnt = 0;
			for(set<int>::iterator it = black.begin() ; it != black.end();it++) //输出数字,注意格式 
			{
				if (cnt % 12 == 0 && cnt) cout << endl;
				if (cnt % 12 != 0) cout << " ";
				cout << *it; cnt++;
			}
			if (black.size() != 0) cout << endl;
			cout << "Total number of black nodes = " << black.size()<< endl;
		}
		else											//数字转矩阵 
		{
			n = -n;
			int num;
			memset(matrix, 0, sizeof(matrix));	//初始化矩阵 
			while (cin >> num && num != -1)				//将每个数字数字所代表的区域矩阵涂黑 (置1) 
			{
				get_dir(num);					//10进制转5进制 
				num_to_matrix(0, 0, n,1);		 
			}
			for (int i = 0; i < n; i++)		//输出输出矩阵,需要注意格式 
			{
				for (int j = 0; j < n; j++)
				{
					if (matrix[i][j]==1) cout << "*";
					else cout << ".";
				}
				cout << endl;
			}
		}
		cin >> n;
		if(n) cout << endl;				//每个输出结束之后有空行,最后一个输出不需要空行 
	}
	return 0;
}

void num_to_matrix(int r, int c, int len,int dep)  
{
	if(!dirs[dep])						//此时该子矩阵就是数字所表示的,进行涂黑处理 
	{
		for (int i = r; i < r + len; i++)
		{
			for (int j = c; j < c + len; j++)
			{
				matrix[i][j] = 1;
			}
		}
	}
	else							//对于每一层根据5进制代表的方位选择下一个子矩阵的位置 
	{
		switch (dirs[dep])
		{
		case 1:num_to_matrix(r, c, len / 2, dep + 1); break;
		case 2:num_to_matrix(r, c + len / 2, len / 2, dep + 1); break;
		case 3:num_to_matrix(r + len / 2, c, len / 2, dep + 1); break;
		case 4:num_to_matrix(r + len / 2, c + len / 2, len / 2, dep + 1); break;
		}
	}
}

void get_dir(int num)					//10进制转5进制,并将5进制的各位存入dirs中 
{
	memset(dirs, 0, sizeof(dirs));
	for (int i = 64; i > 0 ; i--)
	{
		int x = num / pow(5, i);
		if (x > 0)
		{
			dirs[i + 1] = x;
			num = num - x * pow(5, i);
		}
		
	}
	dirs[1] = num;
}

void matrix_to_num(int r, int c, int len, int dep,int dir,int num)
{
	int new_num = 0;
	bool hava_white = false, hava_black = false;		//是否含有黑块或者白块 
	for (int i = r; i < r+len; i++)
	{
		for (int j = c; j < c+len; j++)
		{
			if (matrix[i][j] == 0) hava_white = true;
			if (matrix[i][j] == 1) hava_black = true;
		}
		if (hava_white && hava_black) break;
	}
	if (dep > 1)								//计算该层所表示的5进制数字 
		new_num = pow(5, dep - 2)*dir + num;
	if (hava_white && hava_black)					//如果是灰色的(黑白快都有) ,继续对子矩阵进行DFS,直到找到纯色矩阵 
	{
		matrix_to_num(r, c, len / 2, dep + 1, 1, new_num);
		matrix_to_num(r, c + len / 2, len / 2, dep + 1, 2, new_num);
		matrix_to_num(r + len / 2, c, len / 2, dep + 1, 3, new_num);
		matrix_to_num(r + len / 2, c + len / 2, len / 2, dep + 1, 4, new_num);
	}
	else if (hava_black)						//找到纯黑矩阵(纯黑:???) ,将代表其的数字插入set中 
		black.insert(new_num);
	return;								//纯色直接返回。 
}


UVa806
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值