原题链接: UVa806
题目大意:
根据黑白图像的两种表示方法的规则相互转换。
细节:
- 输出代表黑色块的数字序列时,每行大于12个要换行。
- 输出最后不需要留空行(差点没栽死在这个坑里)
解题思路:
本题其实可以分为两道题一道是矩阵转化为黑点数字序列,另一道是黑点数字序列转化为矩阵。下面是大体思路,具体细节参考代码。(花了挺长时间才写完的,在细节方面栽了很多坑)
第一个问题,整体思路就是利用DFS对矩阵进行判断,可以分为三种情况,全白:返回,全黑:计算表示的十进制数字存入set中,又黑又白:继续分割进行DFS。最后将set中的十进制黑点数字序列输出。注意对应NW,NE,SW,SE所在的位置。
第二个问题,我的思路是,创建一个全0矩阵代表白图,对于每个输入的数字都先将其转化给5进制并且把各位放到一个数组里,然后利用DFS把该数字所对应的区域矩阵全置1,从而涂黑。由于每个数组都要进行一次DFS,而且是是涂完之后在输出,所以时间上可能有所浪费。
遇到问题:
主要都是些细节方面的问题,但是细节方面才是最烦人的。还有就是前边说的时间上可能有点浪费,写完之后也懒得改了。
代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
using namespace std;
void matrix_to_num(int r, int c, int len, int dep, int dir, int num);
void num_to_matrix(int r, int c, int len, int dep);
void get_dir(int num);
const int MAXN = 64 + 10;
int matrix[MAXN][MAXN]; //用于存储输入输出矩阵
set<int> black; //用于存储黑块数字序列
int n, dirs[MAXN]; //dirs:用于存储一个数字代表的5进制的各位数字
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
int kase = 0;cin >> n;
while (n)
{
cout << "Image " << ++kase << endl;
if (n > 0) //矩阵转数字
{
getchar();
black.clear();
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
char ch = getchar();
matrix[i][j] = ch - '0';
}
getchar();
}
matrix_to_num(0, 0, n, 1, 0, 0);
int cnt = 0;
for(set<int>::iterator it = black.begin() ; it != black.end();it++) //输出数字,注意格式
{
if (cnt % 12 == 0 && cnt) cout << endl;
if (cnt % 12 != 0) cout << " ";
cout << *it; cnt++;
}
if (black.size() != 0) cout << endl;
cout << "Total number of black nodes = " << black.size()<< endl;
}
else //数字转矩阵
{
n = -n;
int num;
memset(matrix, 0, sizeof(matrix)); //初始化矩阵
while (cin >> num && num != -1) //将每个数字数字所代表的区域矩阵涂黑 (置1)
{
get_dir(num); //10进制转5进制
num_to_matrix(0, 0, n,1);
}
for (int i = 0; i < n; i++) //输出输出矩阵,需要注意格式
{
for (int j = 0; j < n; j++)
{
if (matrix[i][j]==1) cout << "*";
else cout << ".";
}
cout << endl;
}
}
cin >> n;
if(n) cout << endl; //每个输出结束之后有空行,最后一个输出不需要空行
}
return 0;
}
void num_to_matrix(int r, int c, int len,int dep)
{
if(!dirs[dep]) //此时该子矩阵就是数字所表示的,进行涂黑处理
{
for (int i = r; i < r + len; i++)
{
for (int j = c; j < c + len; j++)
{
matrix[i][j] = 1;
}
}
}
else //对于每一层根据5进制代表的方位选择下一个子矩阵的位置
{
switch (dirs[dep])
{
case 1:num_to_matrix(r, c, len / 2, dep + 1); break;
case 2:num_to_matrix(r, c + len / 2, len / 2, dep + 1); break;
case 3:num_to_matrix(r + len / 2, c, len / 2, dep + 1); break;
case 4:num_to_matrix(r + len / 2, c + len / 2, len / 2, dep + 1); break;
}
}
}
void get_dir(int num) //10进制转5进制,并将5进制的各位存入dirs中
{
memset(dirs, 0, sizeof(dirs));
for (int i = 64; i > 0 ; i--)
{
int x = num / pow(5, i);
if (x > 0)
{
dirs[i + 1] = x;
num = num - x * pow(5, i);
}
}
dirs[1] = num;
}
void matrix_to_num(int r, int c, int len, int dep,int dir,int num)
{
int new_num = 0;
bool hava_white = false, hava_black = false; //是否含有黑块或者白块
for (int i = r; i < r+len; i++)
{
for (int j = c; j < c+len; j++)
{
if (matrix[i][j] == 0) hava_white = true;
if (matrix[i][j] == 1) hava_black = true;
}
if (hava_white && hava_black) break;
}
if (dep > 1) //计算该层所表示的5进制数字
new_num = pow(5, dep - 2)*dir + num;
if (hava_white && hava_black) //如果是灰色的(黑白快都有) ,继续对子矩阵进行DFS,直到找到纯色矩阵
{
matrix_to_num(r, c, len / 2, dep + 1, 1, new_num);
matrix_to_num(r, c + len / 2, len / 2, dep + 1, 2, new_num);
matrix_to_num(r + len / 2, c, len / 2, dep + 1, 3, new_num);
matrix_to_num(r + len / 2, c + len / 2, len / 2, dep + 1, 4, new_num);
}
else if (hava_black) //找到纯黑矩阵(纯黑:???) ,将代表其的数字插入set中
black.insert(new_num);
return; //纯色直接返回。
}
UVa806