MRF的发展

本节描述了旋转框架中不可压缩Navier-Stokes公式的发展。

1.加速度

首先,我们来看看旋转框架的加速度项 Ω ⃗ : \vec \Omega: Ω :
( 0 − ω z − ω y − ω z 0 − ω x − ω y − ω x 0 ) \begin{pmatrix} 0 & -\omega_z & -\omega_y\\ -\omega_z & 0 & -\omega_x \\ -\omega_y & -\omega_x & 0 \\ \end{pmatrix} 0ωzωyωz0ωxωyωx0

符号:I:惯性,R:旋转

对于一般向量:
[ d A ⃗ d t ] I = [ d A ⃗ d t ] R + Ω ⃗ × A ⃗ \left [ \frac{d \vec A}{dt} \right ]_I = \left [ \frac{d \vec A}{dt} \right ]_R + \vec \Omega \times \vec A [dtdA ]I=[dtdA ]R+Ω ×A
对于位置向量:
[ d r ⃗ d t ] I = [ d r ⃗ d t ] R + Ω ⃗ × r ⃗ \left [ \frac{d \vec r}{dt} \right ]_I = \left [ \frac{d \vec r}{dt} \right ]_R + \vec \Omega \times \vec r [dtdr ]I=[dtdr ]R+Ω ×r
u ⃗ I = u ⃗ R + Ω ⃗ × r ⃗ \vec u_I = \vec u_R + \vec \Omega \times \vec r u I=u R+Ω ×r
加速度可以表示为:
[ d u ⃗ I d t ] I = [ d u ⃗ I d t ] R + Ω ⃗ × u ⃗ I \left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \vec u_I}{dt} \right ]_R + \vec \Omega \times \vec u_I [dtdu I]I=[dtdu I]R+Ω ×u I

[ d u ⃗ I d t ] I = [ d [ u ⃗ R + Ω ⃗ × r ⃗ ] d t ] R + Ω ⃗ × [ u ⃗ R + Ω ⃗ × r ⃗ ] \left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \left [ \vec u_R + \vec\Omega \times \vec r \right ] }{dt} \right ]_R + \vec \Omega \times \left [ \vec u_R + \vec \Omega \times \vec r \right ] [dtdu I]I=dtd[u R+Ω ×r ]R+Ω ×[u R+Ω ×r ]

[ d u ⃗ I d t ] I = [ d u ⃗ R d t ] R + d Ω ⃗ d t × r ⃗ + Ω ⃗ × [ d r ⃗ d t ] R ⏟ u ⃗ R + Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ \left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \vec u_R}{dt} \right ]_R + \frac{d \vec \Omega}{dt} \times \vec r + \vec \Omega \times \underbrace{ \left [ \frac{d \vec r}{dt} \right ]_R }_{\vec u_R} + \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r [dtdu I]I=[dtdu R]R+dtdΩ ×r +Ω ×u R [dtdr ]R+Ω ×u R+Ω ×Ω ×r

[ d u ⃗ I d t ] I = [ d u ⃗ R d t ] R + d Ω ⃗ d t × r ⃗ + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ (1) \left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \vec u_R}{dt} \right ]_R + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r \tag1 [dtdu I]I=[dtdu R]R+dtdΩ ×r +2Ω ×u R+Ω ×Ω ×r (1)

2. 惯性坐标系系下Navier-Stokes方程的绝对速度

惯性系中分子粘度恒定的不可压缩Navier-Stokes方程为:

{ D u ⃗ I D t = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 (2) \begin{cases} \frac {D \vec u_I}{D t} = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} \tag2 {DtDu I=(p/ρ)+ν(u I)u I=0(2)

{ ∂ u ⃗ I ∂ t + u ⃗ I ⋅ ∇ u ⃗ I = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 \begin{cases} \frac {\partial \vec u_I}{\partial t} + \vec u_I \cdot \nabla \vec u_I = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} {tu I+u Iu I=(p/ρ)+ν(u I)u I=0

{ ∂ u ⃗ I ∂ t + ∇ ⋅ ( u ⃗ I ⊗ u ⃗ I ) − ( ∇ ⋅ u ⃗ I ) ⏟ 0 u ⃗ I = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 \begin{cases} \frac {\partial \vec u_I}{\partial t} + \nabla \cdot (\vec u_I \otimes \vec u_I) - \underbrace{( \nabla \cdot \vec u_I )}_{0} \vec u_I= - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} tu I+(u Iu I)0 (u I)u I=(p/ρ)+ν(u I)u I=0

{ ∂ u ⃗ I ∂ t + ∇ ⋅ ( u ⃗ I ⊗ u ⃗ I ) = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 (3) \begin{cases} \frac {\partial \vec u_I}{\partial t} + \nabla \cdot (\vec u_I \otimes \vec u_I) = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} \tag3 {tu I+(u Iu I)=(p/ρ)+ν(u I)u I=0(3)

3.相对坐标系下Navier-Stokes方程的相对速度

让我们看看方(2)的动量方程的左边,通过考虑方程(1)的加速度项:
D u ⃗ I D t = D u ⃗ R D t + d Ω ⃗ d t × r ⃗ + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ \frac {D \vec u_I}{D t} = \frac{D \vec u_R}{Dt} + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r DtDu I=DtDu R+dtdΩ ×r +2Ω ×u R+Ω ×Ω ×r

D u ⃗ I D t = ∂ u ⃗ R ∂ t + u ⃗ R ⋅ ∇ u ⃗ R + d Ω ⃗ d t × r ⃗ + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ \frac {D \vec u_I}{D t} = \frac {\partial \vec u_R}{\partial t} + \vec u_R \cdot \nabla \vec u_R + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r DtDu I=tu R+u Ru R+dtdΩ ×r +2Ω ×u R+Ω ×Ω ×r

D u ⃗ I D t = ∂ u ⃗ R ∂ t + ∇ ⋅ ( u ⃗ R ⊗ u ⃗ R ) + d Ω ⃗ d t × r ⃗ + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ (4) \frac {D \vec u_I}{D t} = \frac {\partial \vec u_R}{\partial t} + \nabla \cdot (\vec u_R \otimes \vec u_R) + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r \tag4 DtDu I=tu R+(u Ru R)+dtdΩ ×r +2Ω ×u R+Ω ×Ω ×r (4)
因为 ∇ ⋅ u ⃗ R = ∇ ⋅ u ⃗ I = 0 \nabla \cdot \vec u_R = \nabla \cdot \vec u_I = 0 u R=u I=0,
\begin{align}\nabla \cdot \vec u_I & = \nabla \cdot \left [ \vec u_R + \vec \Omega \times \vec r \right ] = 0 \& = \nabla \cdot \vec u_R + \underbrace{\nabla \cdot \left [ \vec \Omega \times \vec r \right ]}_{0} = 0 \& = \nabla \cdot \vec u_R = 0\end{align}$
另外,可以注意到:
\begin{align}\nabla \cdot \nabla (\vec u_I) & = \nabla \cdot \nabla \left [ \vec u_R + \vec \Omega \times \vec r \right ] \& = \nabla \cdot \nabla (\vec u_R) + \nabla \cdot \underbrace{\nabla (\Omega \times \vec r)}_{0} \& = \nabla \cdot \nabla (\vec u_R )\end{align}

方程(3)可以写成:

{ ∂ u ⃗ R ∂ t + d Ω ⃗ d t × r ⃗ + ∇ ⋅ ( u ⃗ R ⊗ u ⃗ R ) + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ R ) ∇ ⋅ u ⃗ R = 0 (5) \begin{cases} \frac {\partial \vec u_R}{\partial t} + \frac{d \vec \Omega}{dt} \times \vec r + \nabla \cdot (\vec u_R \otimes \vec u_R) + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_R) \\ \nabla \cdot \vec u_R = 0 \end{cases} \tag5 {tu R+dtdΩ ×r +(u Ru R)+2Ω ×u R+Ω ×Ω ×r =(p/ρ)+ν(u R)u R=0(5)

4.相对坐标系下Navier-Stokes方程的绝对速度

方程(5)用旋转速度表示旋转框架中不可压缩的Navier-Stokes方程。

其左侧第三项可以描述为:
\nabla \cdot (\vec u_R \otimes \vec u_R) & = \nabla \cdot ( \vec u_R \otimes \left [ \vec u_I - \vec \Omega \times \vec r \right ] ) \& = \nabla \cdot (\vec u_R \otimes \vec u_I) - \underbrace{\nabla \cdot \vec u_R}_{0} (\vec \Omega \times \vec r) - \underbrace{\vec u_R \cdot \nabla(\vec \Omega \times \vec r)}_{\vec \Omega \times \vec u_R} \& = \nabla \cdot (\vec u_R \otimes \vec u_I) - \vec \Omega \times \vec u_R\end{alignat}
因此,式(5)左边的稳定项可以写成:
在这里插入图片描述
方程(5)可以用绝对速度表示:

{ ∂ u ⃗ R ∂ t + d Ω ⃗ d t × r ⃗ + ∇ ⋅ ( u ⃗ R ⊗ u ⃗ I ) + Ω ⃗ × u ⃗ I = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 (6) \begin{cases} \frac {\partial \vec u_R}{\partial t} + \frac{d \vec \Omega}{dt} \times \vec r + \nabla \cdot (\vec u_R \otimes \vec u_I) + \vec \Omega \times \vec u_I = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} \tag6 {tu R+dtdΩ ×r +(u Ru I)+Ω ×u I=(p/ρ)+ν(u I)u I=0(6)

5 总结

总之,对于多参考系,定常流动的不可压缩Navier-Stokes方程可以写为:

坐标系对流速度定常不可压缩Navier-Stokes方程
惯性绝对速度
在这里插入图片描述
旋转相对速度
在这里插入图片描述
旋转绝对速度
在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值