本节描述了旋转框架中不可压缩Navier-Stokes公式的发展。
文章目录
1.加速度
首先,我们来看看旋转框架的加速度项
Ω
⃗
:
\vec \Omega:
Ω:
(
0
−
ω
z
−
ω
y
−
ω
z
0
−
ω
x
−
ω
y
−
ω
x
0
)
\begin{pmatrix} 0 & -\omega_z & -\omega_y\\ -\omega_z & 0 & -\omega_x \\ -\omega_y & -\omega_x & 0 \\ \end{pmatrix}
⎝⎛0−ωz−ωy−ωz0−ωx−ωy−ωx0⎠⎞
符号:I:惯性,R:旋转
对于一般向量:
[
d
A
⃗
d
t
]
I
=
[
d
A
⃗
d
t
]
R
+
Ω
⃗
×
A
⃗
\left [ \frac{d \vec A}{dt} \right ]_I = \left [ \frac{d \vec A}{dt} \right ]_R + \vec \Omega \times \vec A
[dtdA]I=[dtdA]R+Ω×A
对于位置向量:
[
d
r
⃗
d
t
]
I
=
[
d
r
⃗
d
t
]
R
+
Ω
⃗
×
r
⃗
\left [ \frac{d \vec r}{dt} \right ]_I = \left [ \frac{d \vec r}{dt} \right ]_R + \vec \Omega \times \vec r
[dtdr]I=[dtdr]R+Ω×r
u
⃗
I
=
u
⃗
R
+
Ω
⃗
×
r
⃗
\vec u_I = \vec u_R + \vec \Omega \times \vec r
uI=uR+Ω×r
加速度可以表示为:
[
d
u
⃗
I
d
t
]
I
=
[
d
u
⃗
I
d
t
]
R
+
Ω
⃗
×
u
⃗
I
\left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \vec u_I}{dt} \right ]_R + \vec \Omega \times \vec u_I
[dtduI]I=[dtduI]R+Ω×uI
[ d u ⃗ I d t ] I = [ d [ u ⃗ R + Ω ⃗ × r ⃗ ] d t ] R + Ω ⃗ × [ u ⃗ R + Ω ⃗ × r ⃗ ] \left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \left [ \vec u_R + \vec\Omega \times \vec r \right ] }{dt} \right ]_R + \vec \Omega \times \left [ \vec u_R + \vec \Omega \times \vec r \right ] [dtduI]I=⎣⎡dtd[uR+Ω×r]⎦⎤R+Ω×[uR+Ω×r]
[ d u ⃗ I d t ] I = [ d u ⃗ R d t ] R + d Ω ⃗ d t × r ⃗ + Ω ⃗ × [ d r ⃗ d t ] R ⏟ u ⃗ R + Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ \left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \vec u_R}{dt} \right ]_R + \frac{d \vec \Omega}{dt} \times \vec r + \vec \Omega \times \underbrace{ \left [ \frac{d \vec r}{dt} \right ]_R }_{\vec u_R} + \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r [dtduI]I=[dtduR]R+dtdΩ×r+Ω×uR [dtdr]R+Ω×uR+Ω×Ω×r
[ d u ⃗ I d t ] I = [ d u ⃗ R d t ] R + d Ω ⃗ d t × r ⃗ + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ (1) \left [ \frac{d \vec u_I}{dt} \right ]_I = \left [ \frac{d \vec u_R}{dt} \right ]_R + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r \tag1 [dtduI]I=[dtduR]R+dtdΩ×r+2Ω×uR+Ω×Ω×r(1)
2. 惯性坐标系系下Navier-Stokes方程的绝对速度
惯性系中分子粘度恒定的不可压缩Navier-Stokes方程为:
{ D u ⃗ I D t = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 (2) \begin{cases} \frac {D \vec u_I}{D t} = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} \tag2 {DtDuI=−∇(p/ρ)+ν∇⋅∇(uI)∇⋅uI=0(2)
{ ∂ u ⃗ I ∂ t + u ⃗ I ⋅ ∇ u ⃗ I = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 \begin{cases} \frac {\partial \vec u_I}{\partial t} + \vec u_I \cdot \nabla \vec u_I = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} {∂t∂uI+uI⋅∇uI=−∇(p/ρ)+ν∇⋅∇(uI)∇⋅uI=0
{ ∂ u ⃗ I ∂ t + ∇ ⋅ ( u ⃗ I ⊗ u ⃗ I ) − ( ∇ ⋅ u ⃗ I ) ⏟ 0 u ⃗ I = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 \begin{cases} \frac {\partial \vec u_I}{\partial t} + \nabla \cdot (\vec u_I \otimes \vec u_I) - \underbrace{( \nabla \cdot \vec u_I )}_{0} \vec u_I= - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} ⎩⎪⎨⎪⎧∂t∂uI+∇⋅(uI⊗uI)−0 (∇⋅uI)uI=−∇(p/ρ)+ν∇⋅∇(uI)∇⋅uI=0
{ ∂ u ⃗ I ∂ t + ∇ ⋅ ( u ⃗ I ⊗ u ⃗ I ) = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 (3) \begin{cases} \frac {\partial \vec u_I}{\partial t} + \nabla \cdot (\vec u_I \otimes \vec u_I) = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} \tag3 {∂t∂uI+∇⋅(uI⊗uI)=−∇(p/ρ)+ν∇⋅∇(uI)∇⋅uI=0(3)
3.相对坐标系下Navier-Stokes方程的相对速度
让我们看看方(2)的动量方程的左边,通过考虑方程(1)的加速度项:
D
u
⃗
I
D
t
=
D
u
⃗
R
D
t
+
d
Ω
⃗
d
t
×
r
⃗
+
2
Ω
⃗
×
u
⃗
R
+
Ω
⃗
×
Ω
⃗
×
r
⃗
\frac {D \vec u_I}{D t} = \frac{D \vec u_R}{Dt} + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r
DtDuI=DtDuR+dtdΩ×r+2Ω×uR+Ω×Ω×r
D u ⃗ I D t = ∂ u ⃗ R ∂ t + u ⃗ R ⋅ ∇ u ⃗ R + d Ω ⃗ d t × r ⃗ + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ \frac {D \vec u_I}{D t} = \frac {\partial \vec u_R}{\partial t} + \vec u_R \cdot \nabla \vec u_R + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r DtDuI=∂t∂uR+uR⋅∇uR+dtdΩ×r+2Ω×uR+Ω×Ω×r
D
u
⃗
I
D
t
=
∂
u
⃗
R
∂
t
+
∇
⋅
(
u
⃗
R
⊗
u
⃗
R
)
+
d
Ω
⃗
d
t
×
r
⃗
+
2
Ω
⃗
×
u
⃗
R
+
Ω
⃗
×
Ω
⃗
×
r
⃗
(4)
\frac {D \vec u_I}{D t} = \frac {\partial \vec u_R}{\partial t} + \nabla \cdot (\vec u_R \otimes \vec u_R) + \frac{d \vec \Omega}{dt} \times \vec r + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r \tag4
DtDuI=∂t∂uR+∇⋅(uR⊗uR)+dtdΩ×r+2Ω×uR+Ω×Ω×r(4)
因为
∇
⋅
u
⃗
R
=
∇
⋅
u
⃗
I
=
0
\nabla \cdot \vec u_R = \nabla \cdot \vec u_I = 0
∇⋅uR=∇⋅uI=0,
另外,可以注意到:
方程(3)可以写成:
{ ∂ u ⃗ R ∂ t + d Ω ⃗ d t × r ⃗ + ∇ ⋅ ( u ⃗ R ⊗ u ⃗ R ) + 2 Ω ⃗ × u ⃗ R + Ω ⃗ × Ω ⃗ × r ⃗ = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ R ) ∇ ⋅ u ⃗ R = 0 (5) \begin{cases} \frac {\partial \vec u_R}{\partial t} + \frac{d \vec \Omega}{dt} \times \vec r + \nabla \cdot (\vec u_R \otimes \vec u_R) + 2 \vec \Omega \times \vec u_R + \vec \Omega \times \vec \Omega \times \vec r = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_R) \\ \nabla \cdot \vec u_R = 0 \end{cases} \tag5 {∂t∂uR+dtdΩ×r+∇⋅(uR⊗uR)+2Ω×uR+Ω×Ω×r=−∇(p/ρ)+ν∇⋅∇(uR)∇⋅uR=0(5)
4.相对坐标系下Navier-Stokes方程的绝对速度
方程(5)用旋转速度表示旋转框架中不可压缩的Navier-Stokes方程。
其左侧第三项可以描述为:
因此,式(5)左边的稳定项可以写成:
方程(5)可以用绝对速度表示:
{ ∂ u ⃗ R ∂ t + d Ω ⃗ d t × r ⃗ + ∇ ⋅ ( u ⃗ R ⊗ u ⃗ I ) + Ω ⃗ × u ⃗ I = − ∇ ( p / ρ ) + ν ∇ ⋅ ∇ ( u ⃗ I ) ∇ ⋅ u ⃗ I = 0 (6) \begin{cases} \frac {\partial \vec u_R}{\partial t} + \frac{d \vec \Omega}{dt} \times \vec r + \nabla \cdot (\vec u_R \otimes \vec u_I) + \vec \Omega \times \vec u_I = - \nabla (p/\rho) + \nu \nabla \cdot \nabla (\vec u_I) \\ \nabla \cdot \vec u_I = 0 \end{cases} \tag6 {∂t∂uR+dtdΩ×r+∇⋅(uR⊗uI)+Ω×uI=−∇(p/ρ)+ν∇⋅∇(uI)∇⋅uI=0(6)
5 总结
总之,对于多参考系,定常流动的不可压缩Navier-Stokes方程可以写为:
坐标系 | 对流速度 | 定常不可压缩Navier-Stokes方程 |
---|---|---|
惯性 | 绝对速度 |
|
旋转 | 相对速度 |
|
旋转 | 绝对速度 |
|