调用MapReduce对文件中各个单词出现的次数进行统计
实验配置:环境:Hadoop | 软件:Eclipse | Ubuntu系统 |
————————————————————————————————————————————————————————
内容要求:
1.将待分析的文件(不少于10000英文单词)上传到HDFS
2.调用MapReduce对文件中各个单词出现的次数进行统计
3.将统计结果下载本地。
————————————————————————————————————————————————————————
操作步骤:调用MapReduce执行WordCount对单词进行计数**
一:
• 1. 在Eclipse中创建项目
• 2. 为项目添加需要用到的JAR包
• 3. 编写Java应用程序
• 4. 编译运行程序
• 5. 应用程序部署
二:
• 1. 在Eclipse中创建项目
• 2. 为项目添加需要用到的JAR包
• 3. 编写Java应用程序
• 4. 编译打包程序
• 5. 运行程序
三:
• 1. Ubuntu 14.04
• 2. Hadoop 2.6.0(伪分布式)
• 3. Eclipse 3.8
—————————————————————————————————————————————————————————————
ps: 如何在Ubuntu/CentOS中使用Ecplise来开发MapReduce程序,在Hadoop 2.6.0 下验证通过。虽然我们可以使用命令行编译打包运行自己的MapReduce程序,但毕竟编写代码不方便。使用Eclipse,我们可以直接对HDFS中的文件进行操作,可以直接运行代码,省去许多繁琐的命令。
—————————————————————————————————————————————————————————————
实验步骤
1.下面我们开始着手操作安装eclipse并打开eclipse
2. 在Eclipse中创建项目并添加需要用到的JAR包
第一次打开需要填写workspace(工作空间),保持默认即可
点击File然后在点New Project选择Java Project / 如下图所示
3.为了编写一个能够与HDFS交互的Java应用程序,一般需要向Java工程中添加以下JAR包:
(1)”/usr/local/hadoop/share/hadoop/common”目录下的hadoop-common-2.7.1.jar和haoop-nfs-2.7.1.jar;
(2)/usr/local/hadoop/share/hadoop/common/lib”目录下的所有JAR包;
(3)“/usr/local/hadoop/share/hadoop/hdfs”目录下的haoop-hdfs-2.7.1.jar和haoop-hdfs-nfs-2.7.1.jar;
(4)“/usr/local/hadoop/share/hadoop/hdfs/lib”目录下的所有JAR包。
下面带大家操作
右键找到Configure Build Path…
点击Add External JARS
将以上目录jar包导入。
导入完毕后就开始着手运行Java程序
文件名可以为任意,这里为了让大家简单看清楚改成了HDFSFileIfExist
以下是实验判断HDFS中是否存在某文件,程序名为HDFSFileIfExist.java,程序代码如下
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class HDFSExample {
public static void main(String[] args){
try{
String fileName = "test";
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://localhost:9000");
conf.set("fs.hdfs.impl", "org.apache.hadoop.hdfs.DistributedFileSystem");
FileSystem fs = FileSystem.get(conf);
if(fs.exists(new Path(fileName))){
System.out.println("文件存在");
}else{
System.out.println("文件不存在");
}
}catch (Exception e){
e.printStackTrace();
}
}
}
—————————————————————————————————————————————————————————————
将代码放入是这样的形式 有warning出现不必理会
—————————————————————————————————————————————————————————————
4.编译运行程序
在开始编译运行程序之前,请一定确保Hadoop已经启动运行,如果还没有启动,需要打开一个Linux终端,输入以下命令启动Hadoop:
1.cd /usr/local/hadoop
2../sbin/start-dfs.sh
3.jps#执行出现namenode secondnode datanode证明启动成功
接着run 显示“文件不存在” 到这里说明eclipse运行所需要的环境都没问题
————————————————————————————————————————————————————————————
5.接下来操作词频统计
先点击Flie 然后点 New 再点 project
输入名称 WordCound 点击Finish
以下是代码
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public WordCount() {
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
if(otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCount.TokenizerMapper.class);
job.setCombinerClass(WordCount.IntSumReducer.class);
job.setReducerClass(WordCount.IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for(int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true)?0:1);
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public IntSumReducer() {
}
public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
val = (IntWritable)i$.next();
}
this.result.set(sum);
context.write(key, this.result);
}
}
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private static final IntWritable one = new IntWritable(1);
private Text word = new Text();
public TokenizerMapper() {
}
public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one);
}
}
}
}
这里显示这样就没问题接下做
显示已存在output文件就删除,不存在input文件就创建
cd /usr/local/hadoop
./bin/hdfs dfs -rm -r output #删除output文件夹
./bin/hdfs dfs -mkdir input #创建input文件 如果出错就加上 -p
5.为了方便命令行执行java打包的程序,先创建一个test文件夹保存打包的程序
mkdir /usr/local/hadoop/test
6.接下来安装步骤往下进行:右键WordCound
在Linux本地文件系统中新建的文件上传到HDFS的“/user/hadoop/input”目录下(我是在网上找10000字的英语文章),命令如下:
cd /usr/local/hadoop
./bin/hdfs dfs -put ./wordtets.txt input #wordtest.txt是待词频统计的文本文件
./bin/hdfs dfs -ls input #查看是否上传成功
创建一个文档将10000以上的文章放入并保存
使用hadoop jar命令运行程序,命令如下
cd /usr/local/hadoop
./bin/hadoop jar ./test/WordCount.jar input output
最后查看统计结果:
./bin/hdfs dfs -cat output/part-r-00000
下载统计结果到本地:
./bin/hdfs dfs -get output
ls #出现的output目录就是下载到本地的统计结果
cat ./output/part-r-00000 #结果和HDFS上的output中的一样
打开文档可以看到以下内容和上面一致。
以上实验操作完成,谢谢观看!