QAQ的幸运数字
Problem Description
金牌巨 QAQ 经常靠涨人品 (Rising RP) 来 A 题。他的幸运数字是 4 和 7,因此他也经常在第 4 发或第 7 发提交时过题(误)。
一天,突 (xian) 发 (de) 奇 (wu) 想 (liao) 的 QAQ 定义了一种新的数叫「厉害了我的金桔数」,指只含有且必须同时含有 4 和 7 的数。栗如:47, 747 是「厉害了我的金桔数」,而 2333, 666, 457, 777 就不是「厉害了我的金桔数」。
现在,他想知道在位数不超过 n 的正整数内,有多少个数是「厉害了我的金桔数」。
PS:由于「厉害了我的金桔数」实在是太多啦,QAQ 决定,所有的结果都需要 膜 (模) QAQ 自己,即计算结果需要对 816581 取模(取余)。
Input
输入数据有多组(数据组数不超过 10000),到 EOF 结束。
每组输入为一行,包含一个正整数 n (1 <= n <= 10000)。
Output
对于每组输入,输出一行,包含一个整数,表示在位数不超过 n 的正整数内「厉害了我的金桔数」的个数,结果需要对 816581 取模。
Example Input
1 2 3
Example Output
0 2 8
Hint
如果你的结果不是一步得出的,那么你可能需要在每一步运算时都进行一次取模操作。
n = 3 时,不超过 3 位的「厉害了我的金桔数」共有 8 个,分别为:47, 74, 447, 474, 477, 744, 747, 774。
Author
(a+b)%maxn=(a%maxn+b%maxn)%maxn;
(a-b)%maxn=(a%maxn-b%maxn+maxn)%maxn;
(a*b)%maxn=(a%maxn*b%maxn)%maxn;
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=816581;
int a[10100];
int pow(int a,int n)
{
int p=1;
while(n--)
{
p=(p*a)%maxn;
}
return p;
}
void display()
{
a[1]=0;
a[2]=2;
for(int i=3;i<=10000;i++)
{
a[i]=(a[i-1]%maxn+(int)pow(2,i)%maxn-2+maxn)%maxn;
}
}
int main()
{
int n;
display();
while(cin>>n)
{
printf("%d\n",a[n]);
}
return 0;
}