Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 33871 | Accepted: 11858 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations.Sorted sequence cannot be determined.
Source Code
Problem: 1094 | User: | |
Memory: 720K | Time: 0MS | |
Language: G++ | Result: Accepted |
- Source Code
#include <iostream> #include<string.h> #include<queue> #include<vector> #include<cstdio> #include<algorithm> using namespace std; const int Maxn=105; int n,m,in[Maxn],temp[Maxn],Sort[Maxn],t,pos,num; char X,O,Y; vector<int>G[Maxn]; queue<int>q; void init() { memset(in,0,sizeof(in)); for(int i=0;i<=n;i++) G[i].clear(); } inline bool Find(int u,int v) { for(int i=0;i<G[u].size();i++) if(G[u][i]==v) return true; return false; } int topoSort() { while(!q.empty()) q.pop(); for(int i=0;i<n;i++) if(in[i]==0) q.push(i); pos=0; int unSure=0; while(!q.empty()) { if(q.size()>1) unSure=1; int t=q.front(); q.pop(); Sort[pos++]=t; for(int i=0;i<G[t].size();i++) if(--in[G[t][i]]==0) q.push(G[t][i]); } if(pos<n) return 1; if(unSure) return 2; return 3; } int main() { int x,y,i,flag,ok,stop; while(~scanf("%d%d%*d",&n,&m)) { if(!n||!m) break; init(); flag=2; ok=0; for(i=1;i<=m;i++) { scanf("%c%c%c%*c" ,&X,&O,&Y); if(ok) continue; x=X-'A',y=Y-'A'; if(O=='<'&&!Find(y,x)) { G[y].push_back(x); ++in[x]; } else if((O=='>'&&!Find(x,y))) { G[x].push_back(y); ++in[y]; } memcpy(temp,in,sizeof(in)); flag=topoSort(); memcpy(in,temp,sizeof(temp)); if(flag!=2) { stop=i;ok=1; } } if(flag==3) { printf("Sorted sequence determined after %d relations: ",stop); for(int i=pos-1;i>=0;i--) printf("%c",Sort[i]+'A'); printf(".\n"); } else if(flag==1) printf("Inconsistency found after %d relations.\n",stop); else printf("Sorted sequence cannot be determined.\n"); } return 0; }