不知道叫全组合是否合适,是很常见的问题:N个数,每个数均可独立取M个值,如何遍历所有可能的组合。
大学用穷举法,一个不定重数的循环算法解决这个问题(组合while和for循环),定义重数后可遍历所有可能的组合,效率很低,但代码比较简短。
最近又碰到类似问题:分子链中的每个扭转角都可从0到360度取值,为了搜索所有可能的构象,需要用到遍历。想了几个小时,还是没有写出可以用于不定重数循环的穷举法。
在办公室想,下班回家的车上想,吃饭时也想,终于在上洗手间的时候想到一个新思路!想到后很是激动,虽然99.9%的可能以前早就有人想到过这种算法了,但还是很有成就感。
问题描述:N个数,每个数可取M个值:0,1,。。。,M-1,列出所有的组合。
解决思路:所有的可能数为M^N(M的N次方),常规的穷举过程为(以3个数,4种可能值为例):
数字序号:1 2 3
可能组合:0 0 0
0 0 1
0 0 2
0 0 3
0 1 0
0 1 1
0 1 2
。。。。。。。。。
注意到如果把每种组合看作一个3位数,则每个组合相对上一个组合可认为是增加了1!这样既能避免重复,又能防止遗漏,是最有效、最明确的遍历方式。所以关键就是把组合转化成一个自然数。考虑到一共有64种可能(4×4×4=4^3),只需与64个自然数(1-64)建立对应关系。观察到003的下一个组合是010,即010相当与004,所以十位的1相当于各位的4,这不就是4进制吗?!从自然数到组合方式,可以通过求余和整除得到。例如:最后一个组合333,对应的数字为63,从63得到333的过程为:个位数=63%4=3;十位数=(63/4)%4=17%3=3;百位数=(63/4/4)%4=3%4=3。
更一般的,N个数,M种取值:对1-M^N之间的自然数进行如下处理,得到的排列存入数组A[N]中:
for (n=1; n<=N^M;n++)
{
temp=n;
for(i=0;i<N;i++)
{
A[N-1-i]=temp%M; /* 先求个位,存入数组的末端 */
temp/=M;
}
}