AI-028: Google机器学习教程(ML Crash Course with TensorFlow APIs)笔记1-3 ML简介及线性回归介绍

本文是Google机器学习教程(ML Crash Course with TensorFlow APIs)的学习笔记。教程地址:

https://developers.google.com/machine-learning/crash-course/ml-intro

1.ML介绍(定义及构成)

给出ML的直白定义

常用的术语,基本的算法模型

2.深入ML:线性回归

从图形化、方程式、训练方法来分析线性回归模型

  • 图形化:

  • 方程式

  • 训练方法

通过经验风险最小化方法,将模型的损失降低到最小,而最常用的损失是平方损失,将所有样本的平方损失取均值,就是平均平方损失(MSE)。线性回归模型可以通过最小化MSE来训练。MSE的最小化通过梯度下降方法实现。

MSE计算方程:

模型优化架构:

The cycle of moving from features and labels to models and predictions.

整体思维导图:

梯度下降关键点有两个:

  • 损失(成本)函数对参数求偏导——这是个数学问题
  • 学习率的优化——太小则学习效率低,太大则容易无法收敛,不断尝试

对大数据的训练,可以采用随机梯度下降方法,每次迭代只选择一个样本;或者采用小批量随机梯度下降方法,每次迭代选择10-1000的样本;每次(或每几次)迭代输出损失,控制迭代次数,只要损失达到期望的限度内即可;

3. Google给出的模型调优建议

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铭记北宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值