LeetCode KMP相关的题目

28. 找出字符串中第一个匹配项的下标

方法:KMP

next数组不减一

class Solution {
private:
    void getnext(int* next, const string& s) {
        int j = 0;
        next[0] = j;
        for (int i = 1; i < s.size(); ++i) {
            while (j > 0 && s[i] != s[j]) j = next[j-1];
            if (s[i] == s[j]) ++j;
            next[i] = j;
        }
    }
public:
    int strStr(string haystack, string needle) {
        int n = haystack.size(), m = needle.size();
        int next[m];
        getnext(next, needle);
        int j = 0;
        for (int i = 0; i < n; ++i) {
            while (j > 0 && haystack[i] != needle[j]) j = next[j-1];
            if (haystack[i] == needle[j]) ++j;
            if (j == m) return i - m + 1; 
        }
        return -1;
    }
};

next数组统一减一

class Solution {
private:
    void getNext(int* next, string& s) {
        int j = 0;
        next[0] = j;
        for(int i = 1; i < s.size(); ++i) {
            while(j > 0 && s[i] != s[j]) j = next[j-1];
            if(s[i] == s[j]) ++j;
            next[i] = j;
        }
    }
public:
    int strStr(string haystack, string needle) {
        if(needle.size() == 0) return 0;
        int next[needle.size()];
        getNext(next, needle);
        int j = 0; 
        for(int i = 0; i < haystack.size(); ++i) {
            while(j > 0 && haystack[i] != needle[j]) j = next[j-1];
            if(haystack[i] == needle[j]) ++j;
            if(j == needle.size()) return (i-needle.size()+1);
        }
        return -1;
    }
};

$时间复杂度O(n),空间复杂度O(n)

459. 重复的子字符串

方法:KMP

class Solution {
private:
    void getnext(int* next, const string& s) {
        int j = 0;
        next[0] = j;
        for (int i = 1; i < s.size(); ++i) {
            while (j > 0 && s[i] != s[j]) j = next[j-1];
            if (s[i] == s[j]) ++j;
            next[i] = j;
        }
    }
public:
    bool repeatedSubstringPattern(string s) {
        int n = s.size();
        int next[n];
        getnext(next, s);
        if (next[n-1] != 0 && n % (n-next[n-1]) == 0) return true;
        return false;
    }
};

$时间复杂度O(n),空间复杂度O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值