题目传送门
。
解法:
今天才学这种经典做法。。
如果选最大的然后删除两边很显然这种策略是错误的。
因为有可能两边加起来更优。
那么上面的做法是无法反悔的。。
给他一个反悔的机会。
那么就是:
假设选了i,那么删除i前后的两个点。
然后把i这个点的权值变为a[前]+a[后]-a[i]。
这样再选i的话就表示反悔了选了前后两个。
维护一下这个位置是否删除。这个位置的前一个未被删除的是哪个。后一个未被删除的是哪个就行了。
具体看代码。
代码实现:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<iostream>
using namespace std;
struct node {
int w,c;node() {w=c=0;}
friend bool operator <(node n1,node n2){return n1.c<n2.c;}
};priority_queue<node> a;
int q[210000],h[210000],n,m,s[210000];bool v[210000];
int main() {
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) {scanf("%d",&s[i]);q[i]=i-1;h[i]=i+1;node ss;ss.c=s[i];ss.w=i;a.push(ss);}
if(m*2>n){printf("Error!\n");return 0;}
q[1]=n;h[n]=1;memset(v,false,sizeof(v));int ans=0;
for(int i=1;i<=m;i++) {
while(v[a.top().w]==true)a.pop();
node t=a.top();a.pop();ans+=t.c;int l=q[t.w],r=h[t.w];
node p;p.w=t.w;v[l]=true;p.c+=s[l];v[r]=true;p.c+=s[r];p.c-=t.c;
s[t.w]=p.c;q[t.w]=q[l];h[q[l]]=t.w;h[t.w]=h[r];q[h[r]]=t.w;a.push(p);
}printf("%d\n",ans);
return 0;
}