深度学习手册
文章平均质量分 94
hanliu2003
这个作者很懒,什么都没留下…
展开
-
深度学习笔记(8)预训练模型
在这个例子中,它移除了 text 和 label 列,因为 text 列已经被处理为模型的输入,而 label 列不再需要,因为咱们是完形填空任务,不需要标签。这个方法会对数据集中的每个样本应用指定的函数,并返回一个新的数据集,其中包含应用函数后的结果。这个属性通常用于序列标注任务,以确保输入的长度不超过模型的最大接受长度。这个参数通常用于处理过长的输入序列,以便将其分割成多个小块,然后分别处理这些小块。可以看到结果和上面的通用的不一样了,这里是film movie这些针对你的训练数据的了--------原创 2024-09-20 03:53:48 · 2223 阅读 · 0 评论 -
深度学习笔记(7)文本标注与NER
定义一个自定义数据集类,用于命名实体识别(NER)任务# 初始化方法,接收两个参数:encodings 和 labels# encodings 是从 tokenizer 生成的字典,包含输入序列的各种特征# labels 是原始的标签列表,每个标签列表对应一个文档# 定义一个特殊方法,用于从数据集中获取单个样本# 它接受一个索引 idx,并返回一个字典,包含编码后的特征和标签# 定义一个特殊方法,用于返回数据集中样本的数量# 在这个类中,样本的数量与 labels 的长度相同。原创 2024-09-19 02:57:52 · 1960 阅读 · 0 评论 -
# 深度学习笔记(6)Hugginface -Transformer
在这个例子中,标签的值类型是ClassLabel,它是一个特殊的类型,表示分类特征,并且具有一个名为names的属性,它是一个列表,包含了标签的可能值(在这个例子中是[‘not_equivalent’, ‘equivalent’])。'attention_mask中为1的是 作attention的时候要去算的,为1的就是要去算的,为0就是不去算的,比如第二句话后面补0的都是没意义的,所以没必要算。在某些情况下,这可能是有用的,比如当警告信息对当前任务不重要,或者在调试过程中想要忽略特定的警告。原创 2024-09-18 04:09:57 · 1074 阅读 · 0 评论 -
深度学习笔记(5)文本分类
这段代码创建了一个新的pandas DataFrame,其中包含一个名为’content_S’的列,该列存储了之前通过jieba分词处理后的文本内容。下面这段代码的目的是统计文本中每个非停用词的出现次数,并按照出现次数从高到低进行排序,最后查看出现次数最多的几个词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。导入LDA 模块,语料传进来,映射字典传进来,指定的主题值越准越好 ,因为是无监督的,所以要自己指定。(晚上有些现成的词表可以下载)原创 2024-09-16 03:36:53 · 1076 阅读 · 0 评论 -
深度学习笔记(4)模型部署和实用
2.在Docker安装目录(Windows下默认为C:\Program Files\Docker\Docker\frontend\resources)找到app.asar文件并将其备份,防止出现意外。于是我改成了绝对路径H:\develop\NLP\Modelinstall\pytorhModel\deploy-pytorch-model-master\imagenet_class.txt 报错。然后进入这个镜像,从Registry中拉取镜像复制命令,然后去查看版本号,就可以用命令拉取镜像了。原创 2024-09-14 02:44:10 · 989 阅读 · 0 评论 -
深度学习笔记(3)读懂代码
下面是设置种子,我们在训练模型的时候,很多时候咱们是做一个随机初始化但是现在遇到一个问题,我调参后参数变了,但是我初始化的权重也变了,那么测试后的结果,到底是因为你参数导致的,还是因为你的权重参数初始化好导致的会说不清楚,这时候设置个随机种子,但是每次随机结果都是固定的,所以我们要设置个随机种子。timesnet 就是一共有t个点,每个点有c个特征,原始的一个 1D时间序列就可以表示成 t 乘c的 一个矩阵,要想考虑我们周期性的变换,我们需要先得一个周期是多少,通过傅立叶变换来分析。原创 2024-09-10 15:19:46 · 702 阅读 · 0 评论 -
# 深度学习笔记(2)生成式AI
生成式AI的基础学习。例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。原创 2024-09-04 21:46:46 · 743 阅读 · 0 评论 -
深度学习笔记(1)机器学习与深度学习基础
一些深度学习的简单概念和Transformer的学习。原创 2024-08-28 02:26:45 · 1044 阅读 · 0 评论 -
安装Anaconda与PyTorch的过程与一些坑
pytorch 的安装,配环境以及Copilot的修改。原创 2024-08-15 19:50:33 · 2296 阅读 · 0 评论