离散数学
文章平均质量分 91
北岛寒沫
一生温暖纯良,不舍爱与自由
展开
-
近世代数 笔记与题型连载 第十二章(同态与同构)
同态的概念:(如下图所示)同态映射的性质:同态与同构:同构的性质:凯莱定理:任何一个有限群同构于一个置换群。同态核的定义:同态核的性质:基本思路:从定义出发,只需要证明对于给定的映射方式,存在f(a1※a2)=f(a1)×f(a2)即可。例题:基本思路:从两个方面进行判断即可,也就是分别判断是否满足满射和入射条件。如果只满足满射条件,那么这个同态就是满射同态;如果只满足入射条件,那么这个同态就是入射同态;如果同时满足漫射条件和入射条件,那么这个同态就是同构。例题1:例题2:例题3:例题4:基本思路:借助底原创 2023-05-13 12:54:38 · 13706 阅读 · 0 评论 -
近世代数 笔记与题型连载 第十一章(正规子群与商群)
设是群,H是G的子群。如果对于G中的任意元素g,都有gH=Hg,则称H是G的正规子群或不变子群。原创 2023-05-01 14:06:00 · 15412 阅读 · 0 评论 -
近世代数 笔记与题型连载(集合论)
由两个元素组成的有序序列称为有序对。也称为一个序偶或二元组。原创 2023-04-05 10:24:05 · 2094 阅读 · 0 评论 -
近世代数 笔记与题型连载 第八章(置换群)
有限集合上的一一变换被称为置换。原创 2023-03-30 14:53:16 · 221670 阅读 · 2 评论 -
推理理论中的推理规则(离散数学)
离散数学的命题逻辑中,关于推理理论一共有11条推理规则,但是这些规则的名称和具体内容很难记忆,因此在此对各条推理规则进行解释和总结。本篇内容均为个人理解仅供参考,如有不当之处请联系我修改。原创 2023-03-27 10:52:58 · 4342 阅读 · 1 评论 -
近世代数 笔记和题型连载 第七章(阿贝尔群和循环群)
如果群中的运算是可交换的,那么就称这个群为阿贝尔群,也被称为交换群。原创 2023-03-23 13:44:22 · 10268 阅读 · 2 评论 -
近世代数 笔记和题型连载 第六章(子群)
解析:本题考查共轭子群的定义。可以通过共轭子群判定一个代数系统是另一个代数系统的子群。由于H是G的子群,而M中的元素可以表示为xHx-1,由此可知M是G的共轭子群,所以M是G的子群。原创 2023-03-20 14:43:37 · 9179 阅读 · 0 评论 -
近世代数 笔记和题型连载 第五章(群)
如果一个独异点中每一个元素都存在逆元,则该代数系统是一个群。原创 2023-03-13 20:44:40 · 4833 阅读 · 0 评论 -
离散数学笔记(1)命题逻辑
能够判断真假的陈述句称为命题。原创 2023-03-03 11:07:57 · 1556 阅读 · 0 评论 -
近世代数 笔记和题型连载:第四章(半群和独异点)
半群的定义:如果一个广群中的运算※是可结合的,则称该广群是一个半群。独异点的定义:如果一个半群含有幺元,则称该半群是独异点,也被称为幺半群或单位半群。相关题型:判断一个代数系统是否是一个独异点。原创 2023-02-28 09:46:28 · 4152 阅读 · 0 评论 -
近世代数 笔记和题型连载:第三章(特殊元素)
①代数常数(定义):代数常数包括幺元和零元。要求:找出指定代数系统中的代数常数。②幺元(单位元)(定义):如果对集合中的任意x,都有ex=x,则称e为左幺元,如果xe=x,则称e为右幺元:同时满足左幺元和右幺元的元素称为幺元。运算表中幺元所对应的行和列与运算表对应的行和列相同。要求:判断一个元素是否为幺元以及找出一个代数系统中的幺元。相关:幺元唯一性定理(性质):任何一个集合中如果存在幺元,则幺元唯一,且左右幺元相等。③零元(定义):如果对于集合中任意x,都有ex=e,则称e为左零元,如果xe=e,则原创 2022-05-12 20:42:36 · 10594 阅读 · 0 评论 -
近世代数 笔记和题型连载:第二章(二元运算性质)
①二元运算封闭性(定义)要求运算表中所有的元素均在该集合内。要求:判断给定二元运算是否满足封闭性。②二元运算的可交换性(定义)如果a▲b=b▲a,则称该二元运算可交换,运算表中的元素关于主对角线对称。要求:判断给定的二元运算是否满足可交换性。③二元运算的可结合性(定义)如果(a▲b)▲c=a▲(b▲c),则称该二元运算可结合。要求:判断给定的二元运算是否满足可结合性。④二元运算的可分配性(定义)如果x▲(y+z)=x▲y+x▲z,则称▲对+左可分配;如果(y+z)▲x=y▲x+z▲x,则称对+原创 2022-05-10 12:37:14 · 9523 阅读 · 0 评论 -
近世代数 笔记和题型连载:第一章(代数系统引入)
①集合的n元运算的(定义)对于一个非空集合,从中取n个元素进行映射,映射的结果为该集合中的一个元素。要求:能够判断某运算是否是某一集合的n元运算(首先判断集合是否为空集,接着判断其n个元素和映射结果是否都属于该集合)②运算封闭性(定义)如果运算结果仍然和参与运算的运算数在同一个集合中则为封闭。要求:能够判断某一运算是否满足封闭性。③代数系统(定义)一个由非空集合和定义在该集合上的运算所构成的整体。要求:能够理解,并能根据题意列出运算表。④运算表(相关概念)表示一元或二元运算的结果的表格。原创 2022-05-10 10:59:27 · 2786 阅读 · 0 评论