数据挖掘
文章平均质量分 51
hanphy
-
展开
-
Java集成Weka做逻辑回归(Logistic Regression)
Java集成Weka做逻辑回归(Logistic Regression)从搜索引擎脑补可以得知,“逻辑回归”是一种分类器,通过样本集合的训练之后,可以简单做二元(或多元)分类。看了一下有用Weka做的,来来,咱也试一下。原创 2016-07-13 00:07:03 · 9314 阅读 · 0 评论 -
Java集成Weka做逻辑回归(Logistic Regression)(续)
从网上找样本数据太不好找了,尤其是想看看多分类的那种数据;而且数据量都偏小,不好玩。得,还是自己造数据,当然规则自己拟。自己造数据,生成arff文件。原创 2016-07-13 10:14:20 · 2883 阅读 · 0 评论 -
Java集成Weka做线性回归的例子
线性回归在数据挖掘领域应也是非常常见,即根据现有的数据集(行向量组成的矩阵),(训练)模拟出一个合适的规律(函数),来推测任何新给出的数据组合(向量)应该得到的值。具体的描述可以参见各种博客,怎么推导的看来看去一知半解,但总而言之结果也简单,就是计算得到一个“适当”的多元线性函数Y=a0+a1*x1+a2*x2+a3*x3+…+ak*xk。原创 2016-07-14 15:42:39 · 7470 阅读 · 0 评论 -
逻辑回归模型的评估方法
从Weka工具跑回归模型可以看到评估的输出,怎么解读自行脑补过,大概明白了些。翠花,上截图!我们普通人最直接的理解是正确率吧。应该对应到Correctly Classified Instances比例(正确分类了的实例)。 在上图中,总实例数1000,正确分类了963,*正确率*96.3% 。TP、FP、FN、TN 但一两个数往往说明不了问题,专业人士们,会看真的、被分对、真的、被分错、假的、被原创 2016-07-14 18:09:35 · 20569 阅读 · 0 评论 -
Weka生成和加载PMML文件
网络上太多示例展示了Weka怎么样调用数据分类算法,但想想我如何针对一个训练好的分类模型进行重用呢。所以必须要“导出来”。导出模型,一个标准的方式就是用PMML了。原创 2016-07-13 19:22:54 · 2992 阅读 · 3 评论