考试
T1 movie 0本来还想好好做一下T1的,然后发现期望与概率不会。
T2 sequence 40 本来做了20%的O(n^3),然后又看到只有这道题可做,所以对它进行了优化。努力优化到了O(n^2)变成了40%,也只能到这一步了。。优化的过程中还是有所收获的嗯。
T3 tree 0 最后慌乱中把一个dijkstra的最短路改成了最长路,但是,可想,肯定改错了啊(/笑哭)没时间了,也没认真做,反正就看着像工业题(_ _)|||【果然】。
讲题
(出题人不在啊,然后大家也讲得比较随意= =)
T1 是我没了解概率与期望,然后也不打算了解(不在考范内
T2 “我看数据不大就分块随便搞搞就可以了。”同学认真讲题????
于是solution写的:
求最大连续异或和。
可以先求出异或的前缀和,那么每次就是求在区间中找两个点,把它们的前缀和异或起来的最大值。(嗯)
可以把所有的异或前缀和插入到一个可持久化 trie 中,然后每次询问可以把这个区间的每一个值都在可持久化 trie 上查询一下异或的最大值,复杂度为O(nq log 2 a )。(还不会可持久化trie,但是能理解)
考虑分块,预处理出每个点到每个块的答案,然后询问的时候只需要处理不完整的块中的元素就可以了,复杂度为O(q√n log 2 a)。(那个,分块是啥?)
T3 solution真心没看懂。产生的贡献就听不懂….
改题
于是只能自己补知识点了。