双纤网速叠加+GS105E实现单线三用+AC86+68组网Aimesh实现无线漫游

由于本人基本对Vlan配置是一个小白的状态,所以这篇博文根据自己家里的实际情况,从本技术站借鉴了单线复用、简单网管交换机vlan划分等博文。本来只是想实现Aimesh组网后漫游能达到单纤的网速,但没想到结果令人意外,Aimesh端网速叠加了。发出来供大家探讨,也许不需要这么麻烦。

一、概况

折腾的路很长,先说说前奏吧:如下图的户型结构,精装修,开发商从弱电箱至客厅放了两根网线,向主卧放了一根网线,在客厅放置无线路由器后,最南侧的主卧和次卧wifi信号极其不稳定,有时候会出现无法上网的情况。所以想利用开发商布好的网线利用华硕路由器组网Aimesh,实现无线漫游,所以买了一个AC86U放置在客厅,一个AC68放置在主卧,刚好客厅两根网线,可以有线组网Aimesh,组网很简单,但是组好后发现Aimesh网速只有80多M,客厅能达到180多M,而我的光纤是200M啊。检查网线发现,弱电箱到客厅的一根网线断着1芯,只有7芯,后面还有更惨的,客厅这一端穿线管未露头,网线在水泥里面,我尼玛换都无法更换,壁纸都贴好了总不能砸墙吧,就这么作罢。
户型图
有一天家里另一处住处的房子打算不住了,有一条200M宽带闲置

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 小明家共有x+y个鸡蛋。根据题意可得: x ≡ 1 (mod 3) x ≡ z (mod 5) x ≡ 3 (mod 7) 由于3、5、7互质,根据中国剩余定理,可以求出x的最小正整数解为: x = 52a + 1 其中a为正整数。 因为x是满足条件的最小数,所以x必须大于等于y,即: x + y ≥ x = 52a + 1 所以: y ≥ 52a + 1 - x 将x ≡ 1 (mod 3)代入得: x = 3b + 1 其中b为正整数。 将x ≡ z (mod 5)代入得: x = 5c + z 其中c为正整数。 将x ≡ 3 (mod 7)代入得: x = 7d + 3 其中d为正整数。 将以上四个式子联立,得到: 52a + 1 = 105e + 22z 其中e为正整数。 因为a是正整数,所以22z必须是偶数,即z必须是偶数。 又因为x是满足条件的最小数,所以a、b、c、d、e都必须是正整数且最小。 根据以上条件,可以列出z的取值范围: z = 2, 12, 22, 32, 42, 52 将z的每个取值代入上式,得到: a = 5, 31, 57, 83, 109, 135 b = 2, 8, 14, 20, 26, 32 c = 1, 6, 11, 16, 21, 26 d = 3, 10, 17, 24, 31, 38 e = 1, 2, 3, 4, 5, 6 将a的每个取值代入x = 52a + 1,得到x的每个取值: x = 261, 1605, 2949, 4293, 5637, 6981 将x的每个取值代入y ≥ 52a + 1 - x,得到y的每个取值: y ≥ 1, 47, 91, 135, 179, 223 因为y必须是正整数且最小,所以y的取值为: y = 47 所以小明家共有: x + y = 1605 + 47 = 1652 个鸡蛋。 ### 回答2: 题目中给出了小明家原有鸡蛋的个数x满足“三个三个的数剩1个,5个5个数剩z个,7个7个数剩3个”,所以可以列出如下方程组: x ≡ 1 (mod 3) x ≡ z (mod 5) x ≡ 3 (mod 7) 其中,≡表示同余。我们可以通过求解这个方程组来确定小明家原有鸡蛋的个数x。 利用中国剩余定理,可以将上述方程组转化为: x ≡ a1 (mod m1) x ≡ a2 (mod m2) x ≡ a3 (mod m3) 其中, a1 = 1,m1 = 3 a2 = z,m2 = 5 a3 = 3,m3 = 7 由于m1、m2、m3互质,因此存在一组唯一解。可以利用扩展欧几里得算法求得模数之间的乘法逆元,从而求出中国剩余定理的解。 将y个新鸡蛋加入小明家的存货中,得到最终的鸡蛋数量为 x + y。 因此,小明家共有 x + y 个鸡蛋。 ### 回答3: 根据题意可得到以下方程组: x ≡ 1 (mod 3) x ≡ z (mod 5) x ≡ 3 (mod 7) 我们可以通过中国剩余定理来求解,将每个同余方程的系数相乘得到 M = 3 × 5 × 7 = 105,然后求出 M/3, M/5 和 M/7 在模对应系数下的逆元 t3, t5 和 t7,再将它们乘以对应的同余方程系数和余数,相加后再对 M 取模,得到解 x。 具体计算过程如下: M = 3 × 5 × 7 = 105 t3 = 70, t5 = 63, t7 = 15 x = (1×t3×35 + z×t5×21 + 3×t7×15) mod 105 化简可得:x = 53z + 22 (mod 105) 因为 y 和 x 都是整数,所以当 x + y 是 3 的倍数时,有 y ≡ 0 (mod 3);是 5 的倍数时,有 y ≡ 0 (mod 5);是 7 的倍数时,有 y ≡ 0 (mod 7)。 因此,我们可以定义一个新的变量 k,使得 x+y+ky 是 3、5、7 的公倍数,即: x + y + ky ≡ 0 (mod 3) x + y + ky ≡ 0 (mod 5) x + y + ky ≡ 0 (mod 7) 根据同余方程的性质,可以得到: ky ≡ (2z + 3) (mod 3) ky ≡ (2x + 3) (mod 5) ky ≡ (4x + 4z + 3) (mod 7) 可以求出 k 在模对应系数下的逆元 t3', t5' 和 t7',然后将它们乘以对应的同余方程系数和余数,相加后再对 M 取模,得到解 k。 具体计算过程如下: t3' = 2, t5' = 3, t7' = 6 k = (t3'×(2z+3)×35 + t5'×(2x+3)×21 + t7'×(4x+4z+3)×15) mod 105 化简可得:k = 29x + 68z + 27 (mod 105) 将 k 的值代入上面的方程中得到:x + y = 105n + 53z + 22 - 29x - 68z - 27n 化简可得:y = 78n - 26x - 15z 因为 y 是整数,所以可以将上式中的 n 设为 1,得到:y = 78 - 26x - 15z 将 y 和 x 的表达式代入第一个同余方程中,得到: 53z + 22 + y ≡ 1 (mod 3) 化简可得:z + y ≡ 2 (mod 3) 因为 y 的表达式中不含 z,所以我们可以将 z 看作是独立于 y 的变量,然后解出使得 z + y ≡ 2 (mod 3) 的最小正整数解 z0。将 z0 带入 y 的表达式中,即可得到小明家的鸡蛋总量 x+y+z0。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值