移动端机器学习框架TensorFlow Lite简介与实践

本文介绍了TensorFlowLite,Google为移动端和嵌入式设备开发的轻量级机器学习解决方案。文章详细阐述了其特点、架构、模型转化过程,以及与AppleCoreML的合作。通过示例展示了在iOS上的Demo应用和模型性能。同时,讨论了AI-on-Device的发展趋势和面临的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow Lite

TensorFlow Lite简介

TensorFlowLite是Google在2017年5月推出的轻量级机器学习解决方案,主要针对移动端设备和嵌入式设备。针对移动端设备特点,TensorFlow Lite使用了诸多技术对内核进行了定制优化,预熔激活,量子化内核。TensorFlow Lite具有以下特征:

  1. 跨平台,核心代码由C++编写,可以运行在不同平台上;
  2. 轻量级,代码体积小,模型文件小,运行内存低;
  3. 支持硬件加速。

TensorFlow Lite架构

在server端完成模型的训练。通过TensorFlow Lite Converter转化成可以在手机端运行的.tflite格式的模型。TensorFlow Lite可以接入Android底层的神经网络的API从而进行硬件加速。另外TensorFlow团队宣布,已经与Apple达成合作,可以将TensorFlow平台训练出来的模型转化成可被Apple深度学习框架CoreML所解释运行的格式.mlmodel。这样一来开发者就有了更多的选择。他们既可以选择直接使用Google原生的tflite模型,也可以通过转化工具对接Apple的CoreML框架,更高效发挥Apple的硬件性能。 CoreML的转化工具可以从https://github.com/tf-coreml/tf-corem去下载。

TensorFlow Lite Demo

TensorFlow Lite提供了iOS和Android两个平台的Demo App。 这里以iOS平台为例,按照TensorFlow Lite提供的Tutorial完成配置。

首先安装xcode的工具链:

xcode-select --install

安装automake和libtool:

brew install automake

brew install libtool

运行脚本。脚本的作用是下载相关依赖。主要下载Ten

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值