在排序数组中查找元素的第一个和最后一个位置

本文介绍了如何使用进阶二分查找算法在已排序的整数数组中查找目标值的第一个和最后一个位置,通过拆解为求左端点和右端点两部分,并强调了处理细节如循环条件和中点计算的方法。
摘要由CSDN通过智能技术生成

前言:

这是一道给很经典的二分查找题目,并且该二分查找的算法不同于简单二分,是二分查找的进阶版本。

一、题目描述

34. 在排序数组中查找元素的第一个和最后一个位置

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

二、题目解析

注意只要数据中国可以找到具有二段性,即可适用二分查找算法!!!

我们将这道题拆解成两个部分,第一部分就是求该元素的左端点,另一部分就是求该元素的右端点。其实这两部分是大同小异,只要弄懂其中一个,另一个就迎刃而解!

我们首先来讲第一部分——求该元素的左端点。

第一步将这些数据分为两个部分:小于元素和大于等于该元素这两个部分。

第二步就是普通二分算法的代码

注意这里有一个细节,跟普通二分查找算法不同,也是后面细节的“万恶之源”。就是当 x >= t 时,right = mid,而不是mid - 1,这是因为我们最开始是将数组分为两个部分,一部分就是大于等于该元素,如果right = mid - 1,又可能会将我们要求的数据筛掉,所以这里必须要用right = mid,而不是-1.

其实上面大体结构上是跟普通二分区别不大的,但下面的细节处理是进阶二分的精髓。

1、处理循环条件

这里的循环条件跟处理右端点是一致的,不能写等号,当判断等号时就会死循环!

2、求中点操作

首先我们要知道为了避免数据的溢出我们采用上面的求中点操作,而不是直接加,可能会数据的溢出。

然后上面的两种算法分别是求左边和右边。

求左端点为何采用第一种方法,求右端点为何采用第二种方法呢?
因为左端点是将数据分为小于和大于等于,所以right = mid,如果这里采用第二种求中点方法,就会造成死循环,right的值一直都没有变化

上面就是讲解左端点的解法,右端点也是大同小异。

总结:只要左式和右式的操作数不一样,中点就偏向哪边!!!

三、原码

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        if(nums.size() == 0)
            return {-1,-1};
        //先找左端点,将数组分为小于和大于等于两部分
        int left = 0;
        int right = nums.size() - 1;
        int mid = 0;
        int begin = 0;
        while(left < right)//第一个小细节
        {
            mid = left + (right - left)/2;//第二个小细节
            if(nums[mid] < target)
                left = mid + 1;
            else
                right = mid;//万恶之源
        }
        if(nums[left] == target)
            begin = left;
        else
            return {-1,-1};
        left = 0;
        right = nums.size() - 1;
        //再找右端点,将数组分为小于等于和大于两个部分
        while(left < right)
        {
            mid = left + (right - left + 1)/2;
            if(nums[mid] <= target)
                left = mid;
            else
                right = mid - 1;
        }
        return {begin, right};
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可涵不会debug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值