小算法程序收集

求最大公约数的算法,这个我想应该是算法或程序书籍中的常客了,可是真正写时可能会忘掉,最简单的就是欧几里得算法(又称辗转相除法)。就是下面这种:

定理:gcd(a,b) = gcd(b,a mod b) (a>b 且a mod b 不为0)

那么如果是多个数怎么整?

static int gmx_greatest_common_divisor(int p, int q)
{
    int tmp;
    while (q != 0)
    {
        tmp = q;
        q = p % q;			//求新的余数,就是那个a mod b 
        p = tmp;			//更新p为原来的q
    }
    return p;
}

用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。

从简单易于理解来说,用递归方式可能程序更加易于阅读,但是显然非递归函数比递归函数有更高的执行效率。

附递归方式:

int divisor(int m,int n)
{
	if (m % n == 0)
	{return n;}
	else
	{return divisor(n,m % n);}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值