当n很大时计算1-2+3-4+5-6+7...+n

这道题目其实并不难,但是如何写才能让程序看上去更简单,更高效呢?看一下几种算法的比较:

算法一:

long fn1(long n)
 
{
 
 long temp=0;
 
 int i,flag=1;
 
 if(n<=0)
 
 {
 
  cout<<"error:n must >0"<<endl;
 
  exit(1);
 
 }
 
 for(i=1;i<=n;i++)
 
 {
 
  temp=temp+flag*i;
 
  flag=flag*(-1);
 
 }

 return temp;
 
}

这样写其实是最容易理解的写法,但是效率却很低,尤其当数据量很大时,下面是一个改进方法:

算法二:

long fn2(long n)
 
{
 
 long temp=0;
 
 int i=1,j=1,flag=1;
 
 if(n<=0)
 
 {
 
  cout<<"error:n must >0"<<endl;
 
  exit(1);
 
 }
 
 while(j<=n)
 
 {
 
  temp+=i;
 
  i=-i;
 
  i>0? i++ :i--;
 
  j++;
 
 }
 
 return temp;

 }

这样写改进了不少,将所有涉及到乘法指令的语句改为执行加法指令,既达到要题目的要求而且运算时间上缩短了很多,而代价仅仅是增加了一个整型变量!但是这样的话效率依然很低。下面看方法三

算法三:

 long fn3(long n)
 
{
 
 if(n<=0)
 
 {
 
  cout<<"error:n must >0"<<endl;
 
  exit(1);
 
 }
 
 if(n%2==0)
 
  return(n/2)*(-1);
 
 else
 
  return(n/2)*(-1)+n;
 
}

这样写,不仅程序看起来更简单,代码量减少了不少,而且程序的运行效率得到了一个极大的提升,当然还可以进一步的优化以获得的最高效率

法四:

 long fn4(long n)
 
{
 
 if(n<=0)
 
 {
 
  cout<<"error:n must >0"<<endl;
 
  exit(1);
 
 }
 
 if(n%2==0)
 
  return(n>>1)*(-1);//当你需要乘以除以2的时候,不妨用位运算符<<>>来代替,执行效率更高
 
 else
 
  return-((n-1)>>1)+n;
 
}

在这里,用位运算符将十进制转换成二进制来运算,无疑进一步提升了效率

 

 

 

 

 


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 这是一个数列求和的问题,数列的通项公式为 (2k-1)/k!,其中 k 从 1 取到 n。 将每一项代入公式,得到: 1+3/2+5/6+7/24+...+(2n-1)/n! 需要将每一项化简成通分数,然后再求和。具体步骤如下: 1. 将每一项的分母化成 k! 的形式,即: 1 = 1!/1! 3/2 = 3!/2!/3 5/6 = 3!/2!/3 * 5/4 7/24 = 3!/2!/3 * 5/4 * 7/6 ... 2. 将每一项的分子化成 2k-1 的形式,即: 1 = 2*1-1 3/2 = 2*2-1 5/6 = 2*3-1 7/24 = 2*4-1 ... 3. 将每一项的分子分母相乘,得到: 1 = 1!/1! 3/2 = 3!/2!/3 5/6 = 3!/2!/3 * 5/4 7/24 = 3!/2!/3 * 5/4 * 7/6 ... 4. 将每一项相加,得到最终的结果: 1+3/2+5/6+7/24+...+(2n-1)/n! = (1+3+5/2+7/6+...+(2n-1)/(n-1)!)/n! 其中,分子的部分是一个等差数列,公差为 1,首项为 1,末项为 2n-1。根据等差数列求和公式,可得: 1+3+5/2+7/6+...+(2n-1)/(n-1)! = n!(2n-1)/(n+1) 将其代入原式,得到: 1+3/2+5/6+7/24+...+(2n-1)/n! = (n!(2n-1)/(n+1))/n! 化简可得: 1+3/2+5/6+7/24+...+(2n-1)/n! = (2n-1)/(n+1) 因此,原式的结果为 (2n-1)/(n+1)。 ### 回答2: 这个数列的通项公式可以写为:(2n-1)/n!。 其中,“n!”表示n的阶乘,即n的所有正整数乘积,例如3!=3×2×1=6。因为阶乘的增长速度非常快,所以当n变得很大,分母n!的影响会变得越来越大,而分子2n-1的影响会变得越来越小,因此数列的通项公式趋近于0。 此外,对于每个n,(2n-1)/n!的值都是正数,因为分子2n-1是奇数,分母n!是正整数,所以其值必须是正的。 换句话说,这是一个非常逐渐递减的正数数列,其值越来越接近于0,直到最后几乎为0。实际上,在n趋近于无穷大,这个数列的极限为0,可以用数学方证明。 总之,这个数列的通项公式为(2n-1)/n!,它是一个非常小的逐渐递减的正数数列,趋近于0,并且在n趋近于无穷大,其极限为0。 ### 回答3: 首先要理解题目中的表达式。这是一个数列,每一项的分子是奇数数列(1,3,5,7,9……)从1开始第n项的数,分母是从1开始的n的阶乘(1!,2!,3!,4!……)。 我们可以通过一些计算来推导出数列的通项公式。假设数列的通项公式是an=m/n!,其中m是一个关于n的函数,那么我们可以通过递推式来计算这个函数的值。 根据递推式,我们可以列出以下的等式: an = (2n-1)/(n!) = (2n-1)/(n(n-1)!) = 2(n-1)+1/(n-1)!n an-1 = (2n-3)/((n-1)!) = (2n-3)/((n-1)(n-2)!)) = 2(n-2)+1/((n-2)!)(n-1) 因为an-1和an都有分母是(n-1)!的部分,我们可以消去它们,然后得到以下的等式: an = [(2n-1)/n]an-1 我们可以通过递推得出: a1 = 1/1! a2 = 3/2! a3 = 5/3! …… an = [(2n-1)/n]an-1 我们可以通过上面的递推式计算出更多项,然后发现这个数列的通项公式是: an = (2n-1)/n! 现在我们可以证明这个公式,然后验证它的正确性。我们可以通过数学归纳来证明这个公式。首先,当n=1公式成立,因为: a1 = (2×1-1)/1! = 1/1! 式子左边的值为a1,等于式子右边的值,所以公式成立。 然后,假设当n=k公式也成立,即: ak = (2k-1)/k! 我们需要证明当n=k+1公式也成立,那么: ak+1 = (2(k+1)-1)/(k+1)! = (2k+1)/(k+1)×(2k-1)/k! = [(2k+1)/k]×[(2k-1)/k!] = [(2k-1)/k!]×[(2k+1)/k+1] = ak×[(2k+1)/(k+1)] 这个式子和递推式是一样的,所以我们已经证明了这个公式成立。 因此,我们可以得出这个数列的通项公式是an=(2n-1)/n!,这个公式是正确的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FairyTale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值