06 go语言_包和封装、依赖管理

包和封装
1、封装:
1-1、名字一般使用CamelCase。
1-2、首字母大写:pubilc。创建的方法可以被其他包使用。
1-3、首字母小写:private。创建的方法只能在包内引用,无法在包外应用。
1-4、简而言之你写的包,需要被其他包调用就首字母大写开头写方法。不需要,只在包内用,就首字母小写开头写方法。
2、包:
2-1、每个目录就是一个包,包名和目录名可以不一样。
2-2、main包包含可执行入口。
2-3、为结构定义的方法必须放在同一个包内,可以是不同的文件。
2-4、利用“定义别名”或者“使用组合”的方法,扩充系统类型或者别人的类型:。
3、如何扩充系统类型或者别人的类型:
3-1、定义别名:最简单。缺点:转为组合,需要修改大量代码。
3-2、使用组合:最常用。
3-3、使用内嵌来扩展已有类型:需要省下许多代码。

依赖管理
1、依赖管理的三个阶段:GOPATH、GOVENDOR、go mod。
2、 GOVENDOR:

  • 每个项目有自己的vendor目录,存放第三方库
  • 大量第三方依赖管理工具:glide,dep,go,dep,…

3、 go mod的使用
1-1、由go命令统一的管理,用户不必关心目录结构。
1-2、初始化:go mod init
1-3、增加依赖:go get
1-4、更新依赖:
# go get [@v…]
# go mod tidy // 整理依赖,去掉不需要的
1-5、将旧项目迁移到go mod:
# go mod init
# go build ./…

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值