函数很难哟~那我来分享一下函数心得

本文提供了高中函数学习的四大策略:深入理解函数概念,揭示函数与其他数学知识的联系,掌握数形结合的方法,以及了解学生需求,进行有针对性的教学。通过这四个阶段的学习,学生可以逐步深化对函数的理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学里面的函数可能是很多高中学生的噩梦吧。现在我在这里面给你们一些小技巧学习

函数学习心得
在学习中,通过观看视频、写作业、阅读他人作业、参与评论、在线研讨等
活动不断提高看书的教学理论和业务水平,我深感函数思想方法在高中数学中
的应用要重点解决好以下几个问题:
一、准确、深刻理解函数的有关概念
函数是中学数学中的一个重要概念,函数是高中数学的基础,学生学习函
数的知识分四个阶段.第一个阶段是在初中,学生已经接受了初步的函数知识,
掌握了一些简单函数的表示法、性质、图像.
第二个阶段(数学必修1),第三个阶段将学习三角函数(数学必修4)、数
列(数学必修5),第四个阶段在选修课程中,如导数及其应用、概率(选修系
列2)、参数方程(选修系列4)等都仍然要涉及函数知识的再认识,是对函数
及其应用研究的深化和提高.
二、揭示并认识函数与其他数学知识的内在联系
在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,
运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类
讨论、数形结合等思想的综合运用,综合问题的求解往往需要应用多种知识和技
能.函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点.
可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容,在利用函
数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式.
三、把握数形结合的特征和方法
数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表
象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途
径.函数图像的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函
数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特
征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制
图形,又要熟练地掌握函数图像的平移变换、对称变换.
四、了解学生,有的放矢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值