归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法。 该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。具体而言,是让每个小的子序列都有序,然后有序的合并这些子序列,从而得到一个整体有序的序列。
对于归并排序,其时间复杂度是O(nlogn).因为每次都将其对半分,这样,对于一个长度为n的数组,需要分割logn次。加上每个的排序时间,就是nlogn. 对于空间复杂度,是O(n)。因为要申请空间进行排序,每个数字都需要申请。这样就同快速排序形成了区别:对于快排,其空间复杂度和时间复杂度是有最好和最坏的情况的。快排的平均时间复杂度是O(nlogn),但是其最坏的情况能到O(n^2). 快排的空间复杂度最坏是O(n)最好是O(logn).
归并排序的C语言实现如下:
void Merge(int sourceArr[],int tempArr[], int startIndex, int midIndex, int endIndex)
{
/*sourceArr是需要排序的数组,temmpArr是额外开辟的空间。*/
int i = startIndex, j=midIndex+1, k = startIndex;
//对归并数组的排序,首先存在tempArr里面
while(i!=midIndex+1 && j!=endIndex+1)
{
if(sourceArr[i] > sourceArr[j])
tempArr[k++] = sourceArr[j++];
else
tempArr[k++] = sourceArr[i++];
}
while(i != midIndex+1)
tempArr[k++] = sourceArr[i++];
while(j != endIndex+1)
tempArr[k++] = sourceArr[j++];
//然后在还原到sourceArr里面
for(i=startIndex; i<=endIndex; i++)
sourceArr[i] = tempArr[i];
}
//内部使用递归
void MergeSort(int sourceArr[], int tempArr[], int startIndex, int endIndex)
{
int midIndex;
if(startIndex < endIndex)
{
midIndex = startIndex + (endIndex-startIndex) / 2;
MergeSort(sourceArr, tempArr, startIndex, midIndex);
MergeSort(sourceArr, tempArr, midIndex+1, endIndex);
Merge(sourceArr, tempArr, startIndex, midIndex, endIndex);
}
}
int main(){
int a[10] = {2,4,6,1,5,9,33,21,12,8};
int b[10];
MergeSort(a, b, 0, 9);
for(i=0; i<10; i++)
printf("%d ", a[i]);
printf("\n");
return 0;
}