这道题解法很多,最经典的就是动态规划。
状态是数组下标i,状态对应的值是以i为终点的连续最大和,用一个DP数组记录每个状态的值。
原问题转化为求max(DP[0]……DP[i]), 为求DP[i]的值,需要解决的子问题是求出DP[0]……DP[i-1]。
原问题和子问题的关系也即———转移方程是:
DP[i] = array[i] (DP[i-1]>0) || DP[i-1] + array[i] (DP[i-1]<=0)
int FindGreatestSumOfSubArray(vector<int> array) {
int size = array.size();
int *DP = new int[size];
int ret = array[0];
memset(DP, 0, sizeof(DP));
DP[0] = array[0];
for (int i = 1; i < size; i++) {
if (DP[i - 1] <= 0) {
DP[i] = array[i];
}
else {
DP[i] = DP[i - 1] + array[i];
}
}
for (int i = 0; i < size; i++) {
ret = max(ret, DP[i]);
}
return ret;
}