连续子数组的最大和——剑指offer

这道题解法很多,最经典的就是动态规划。
状态是数组下标i,状态对应的值是以i为终点的连续最大和,用一个DP数组记录每个状态的值。
原问题转化为求max(DP[0]……DP[i]), 为求DP[i]的值,需要解决的子问题是求出DP[0]……DP[i-1]。
原问题和子问题的关系也即———转移方程是:

DP[i] = array[i] (DP[i-1]>0) || DP[i-1] + array[i] (DP[i-1]<=0)

int FindGreatestSumOfSubArray(vector<int> array) {
    int size = array.size();
    int *DP = new int[size];
    int ret = array[0];
    memset(DP, 0, sizeof(DP));
    DP[0] = array[0];
    for (int i = 1; i < size; i++) {
        if (DP[i - 1] <= 0) {
            DP[i] = array[i];
        }
        else {
            DP[i] = DP[i - 1] + array[i];
        }

    }
    for (int i = 0; i < size; i++) {
        ret = max(ret, DP[i]);
    }
    return ret;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值