LeetCode 483 Smallest Good Base 解题报告

原文链接: http://hankerzheng.com/blog/LeetCode-Smallest-Good-Base

Problem Description

483 Smallest Good Base

For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a string representing n, you should return the smallest good base of n in string format.

Example 1:

Input: “13”
Output: “3”
Explanation: 13 base 3 is 111.

Example 2:

Input: “4681”
Output: “8”
Explanation: 4681 base 8 is 11111.

Example 3:

Input: “1000000000000000000”
Output: “999999999999999999”
Explanation: 1000000000000000000 base 999999999999999999 is 11.

Note:
The range of n is [3, 10^18].
The string representing n is always valid and will not have leading zeros.

中文大意: 给定一个范围在[3, 10^18]中的一个数, 找到一个进制base, 使得该数在base进制下表示的数的每一位都是1.

My Solution

Naive Solution

根据题目意思, 很容易写出checkBase(base,n)这个函数, 对于一个给定的baes判断该base是否为给定数n的good base, 并且这个判断函数的时间复杂度为O(log N). 搜索的空间自然为0n - 1. 那么, 我们就能写出一个时间复杂度为O(N log N)的算法.

class Solution(object):
    def smallestGoodBase(self, n):
        """
        :type n: str
        :rtype: str
        """
        def checkBase(base, n):
            """
            Given a base, check whether it is a good base.
            Time complexity is O(log N)
            """
            current = 1
            while current < n:
                current = current * base + 1
            return current == n
        thisNum = int(n)
        for i in xrange(2, thisNum):
            if checkBase(i, thisNum):
                return str(i)
        return str(thisNum - 1)

然而题目给定n的范围为[3, 10^18], 即使是O(N log N)的方法我们也无法接受.

Better Solution

Naive Solution是通过遍历base来搜索整个解空间的, 除此之外, 我们也可以通过遍历转换后1的位数来遍历搜索整个解空间, 这样搜索的范围会小很多.

我们假设在goodBase进制下, 最终得到的数是11...1, 其中有k个1. 那么k的取值范围就是[2, log(n, 2)]. 然后我们用二分查找的方式来判断是否存在这样一个整数base, 使得n通过进制转换后得到一个由k1组成的数.

该算法的时间复杂度为O(logN * logN)

import math
class Solution(object):
    def smallestGoodBase(self, n):
        """
        :type n: str
        :rtype: str
        """
        def getAnsofBase(length, base):
            """
            Convert 11...11 (base `base`) to base 10
            """
            ans = 1
            for i in xrange(length-1):
                ans = ans * base + 1
            return ans

        def findLengthBase(length, n):
            """
            Check whether there exist a base such that
            n in base `base` == 111...111 (length's 1s)
            """
            start, end = 0, n/2
            while start <= end:
                mid = (start + end) / 2
                target = getAnsofBase(length, mid)
                if target == n:
                    return mid
                elif target < n:
                    start = mid + 1
                else:
                    end = mid - 1
            return -1

        num = int(n)
        thisLen = int(math.log(num,2)) + 1
        while thisLen > 2:
            retVal = findLengthBase(thisLen, num)
            if retVal != -1:
                return str(retVal)
            thisLen -= 1
        return str(num - 1)

Mathmatical Solution

假设base是我们最终需要求的good base, k为进制转换后1的个数, 那么, 我们可以得到如下等式:

base^(k-1) + base^(k-2) + … + base^1 + base^0 = N … [1]

base^k + base^(k-1) + … + base^2 + base^1 = N * base

因此, 我们可以得到:

base^k - base^0 = (base - 1) * N

N = (base^k - 1) / (base - 1) …. [2]

[1], 可以得:

base ^ (k-1) < N < (base+1) ^ (k-1) … 多项式展开可证右边的不等号

base < (k-1)-th root of N < base + 1 … [3]

根据[2][3], 我们可以通过遍历位数的方法得到最终答案

class Solution(object):
    def smallestGoodBase(self, n):
        """
        :type n: str
        :rtype: str
        """        
        num = int(n)
        thisLen = int(math.log(num,2)) + 1
        while thisLen > 2:
            # from equation [3], we havve
            thisBase = int(num ** (1.0/(thisLen - 1)))
            # from equation [2], we have
            if num * (thisBase - 1) == thisBase ** thisLen - 1:
                return str(thisBase)
            thisLen -= 1
        return str(num - 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值