- 博客(4)
- 收藏
- 关注
原创 家具外观专利图像分类
随着家具行业设计创新与外观专利数量的快速增长,如何对大量家具外观图像进行自动分类与管理存在以下问题:(1) 人工判别效率低,在大规模专利图库中难以快速检索。(2) 手工特征对复杂纹理、光照变化和多视角图像的适应性差。(3) 当新类别不断出现时,传统方法需要大量重新设计与调参工作。近年来,卷积神经网络(Convolutional Neural Network,CNN)在大规模图像分类[8]任务中取得了突破性进展,例如 AlexNet、VGG、ResNet 等网络在 ImageNet 等公开数据集上显著
2025-12-03 18:31:30
128
家具外观专利图像分类项目
随着家具行业设计创新与外观专利数量的快速增长,如何对大量家具外观图像进行自动分类与管理存在以下问题:
(1) 人工判别效率低,在大规模专利图库中难以快速检索。
(2) 手工特征对复杂纹理、光照变化和多视角图像的适应性差。
(3) 当新类别不断出现时,传统方法需要大量重新设计与调参工作。
近年来,卷积神经网络(Convolutional Neural Network,CNN)在大规模图像分类[8]任务中取得了突破性进展,例如 AlexNet、VGG、ResNet 等网络在 ImageNet 等公开数据集上显著优于传统方法。[1] [10]这些模型具备强大的特征自动学习能力,有望直接迁移到家具外观专利分类任务中。
2025-12-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅