【20天快速掌握Python】day18-进程

20 篇文章 0 订阅
19 篇文章 1 订阅

进程

程序:例如xxx.py这是程序,是一个静态的。

进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。

不仅可以通过线程完成多任务,进程也是可以的。

进程的状态

工作中,任务数往往大于cpu的核数,即一定有一些任务正在执行,而另外一些任务在等待cpu进行执行,因此导致了有了不同的状态。

  • 就绪态:运行的条件都已经满足,正在等在cpu执行。

  • 执行态:cpu正在执行其功能。

  • 等待态:等待某些条件满足,例如一个程序sleep了,此时就处于等待态。

1.创建进程

multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情。

示例:创建一个进程,执行两个死循环。

from multiprocessing import Process
import time


def run_proc():
    """子进程要执行的代码"""
    while True:
        print("----2----")
        time.sleep(1)


if __name__=='__main__':
    p = Process(target=run_proc)
    p.start()
    while True:
        print("----1----")
        time.sleep(1)

说明:

  • 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动

1.1 方法说明

Process( target [, name [, args [, kwargs]]])

  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码

  • args:给target指定的函数传递的参数,以元组的方式传递

  • kwargs:给target指定的函数传递命名参数

  • name:给进程设定一个名字,可以不设定

Process创建的实例对象的常用方法:

  • start():启动子进程实例(创建子进程)

  • is_alive():判断进程子进程是否还在活着

  • join([timeout]):是否等待子进程执行结束,或等待多少秒

  • terminate():不管任务是否完成,立即终止子进程

Process创建的实例对象的常用属性:

  • name:当前进程的别名,默认为Process-N,N为从1开始递增的整数

  • pid:当前进程的pid(进程号)

示例:

from multiprocessing import Process
import os
from time import sleep


def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)

if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

1.2 Pool

开启过多的进程并不能提高你的效率,反而会降低你的效率,假设有500个任务,同时开启500个进程,这500个进程除了不能一起执行之外(cpu没有那么多核),操作系统调度这500个进程,让他们平均在4个或8个cpu上执行,这会占用很大的空间。

如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

def task(n):
    print('{}----->start'.format(n))
    time.sleep(1)
    print('{}------>end'.format(n))


if __name__ == '__main__':
    p = Pool(8)  # 创建进程池,并指定线程池的个数,默认是CPU的核数
    for i in range(1, 11):
        # p.apply(task, args=(i,)) # 同步执行任务,一个一个的执行任务,没有并发效果
        p.apply_async(task, args=(i,)) # 异步执行任务,可以达到并发效果
    p.close()
    p.join()

进程池获取任务的执行结果:

def task(n):
    print('{}----->start'.format(n))
    time.sleep(1)
    print('{}------>end'.format(n))
    return n ** 2


if __name__ == '__main__':
    p = Pool(4)
    for i in range(1, 11):
        res = p.apply_async(task, args=(i,))  # res 是任务的执行结果
        print(res.get())  # 直接获取结果的弊端是,多任务又变成同步的了
       p.close()
    # p.join()  不需要再join了,因为 res.get()本身就是一个阻塞方法

异步获取线程的执行结果:

import time
from multiprocessing.pool import Pool


def task(n):
    print('{}----->start'.format(n))
    time.sleep(1)
    print('{}------>end'.format(n))
    return n ** 2


if __name__ == '__main__':
    p = Pool(4)
    res_list = []
    for i in range(1, 11):
        res = p.apply_async(task, args=(i,))
        res_list.append(res)  # 使用列表来保存进程执行结果
    for re in res_list: 
        print(re.get())
    p.close()

1.3 进程间不能共享全局变量

from multiprocessing import Process
import os

nums = [11, 22]

def work1():
    """子进程要执行的代码"""
    print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
    for i in range(3):
        nums.append(i)
        print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))

def work2():
    """子进程要执行的代码"""
    nums.pop()
    print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))

if __name__ == '__main__':
    p1 = Process(target=work1)
    p1.start()
    p1.join()

    p2 = Process(target=work2)
    p2.start()

    print('in process0 pid={} ,nums={}'.format(os.getpid(),nums))

运行结果:

in process1 pid=2707 ,nums=[11, 22]
in process1 pid=2707 ,nums=[11, 22, 0]
in process1 pid=2707 ,nums=[11, 22, 0, 1]
in process1 pid=2707 ,nums=[11, 22, 0, 1, 2]
in process0 pid=2706 ,nums=[11, 22]
in process2 pid=2708 ,nums=[11]

2.进程和线程的区别

2.1 功能

  • 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ。

  • 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口。

2.2 定义的不同

  • 进程是系统进行资源分配和调度的一个独立单位.

  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

2.3 区别

  • 一个程序至少有一个进程,一个进程至少有一个线程.

  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。

  • 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率

  • 线线程不能够独立执行,必须依存在进程中

  • 可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人

2.4 优缺点

线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。

3.进程间通信

3.1 进程间通信-Queue

from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1") 
q.put("消息2")
print(q.full())  #False
q.put("消息3")
print(q.full()) #True

#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4",True,2)
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")

#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

说明

初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

  • Queue.qsize():返回当前队列包含的消息数量;

  • Queue.empty():如果队列为空,返回True,反之False ;

  • Queue.full():如果队列满了,返回True,反之False;

  • Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;

2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;

  • Queue.get_nowait():相当Queue.get(False);

  • Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;

2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;

  • Queue.put_nowait(item):相当Queue.put(item, False);

3.2 使用Queue实现进程共享

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            break

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    print('所有数据都写入并且读完')

4.线程池

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

from multiprocessing import Pool
import os, time, random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))

po = Pool(3)  # 定义一个进程池,最大进程数3
for i in range(0,10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

print("----start----")
po.close()  # 关闭进程池,关闭后po不再接收新的请求
po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行效果:

----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----

multiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;

  • close():关闭Pool,使其不再接受新的任务;

  • terminate():不管任务是否完成,立即终止;

  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

# 修改import中的Queue为Manager
from multiprocessing import Manager, Pool
import os, time, random


def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))


def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "helloworld":
        q.put(i)


if __name__ == "__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

运行结果:

(4171) start
writer启动(4173),父进程为(4171)
reader启动(4174),父进程为(4171)
reader从Queue获取到消息:h
reader从Queue获取到消息:e
reader从Queue获取到消息:l
reader从Queue获取到消息:l
reader从Queue获取到消息:o
reader从Queue获取到消息:w
reader从Queue获取到消息:o
reader从Queue获取到消息:r
reader从Queue获取到消息:l
reader从Queue获取到消息:d
(4171) End
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值