Python | 需求预测模型【待续】

目录

需求预测

1.方法选择

2.颗粒度选择

3.在医药行业的应用

预测模型

1.模型对比

2.Prophet

3.Holt-Winters


需求预测

1.方法选择

方法

适用范围分类
移动平均法中小企业、SKU较少的卖家低成本预测方案
Excel趋势线预测中小企业、SKU较少的卖家低成本预测方案
季节性系数法中小企业、SKU较少的卖家低成本预测方案
机器学习模型(XGBoost/LSTM神经网络)大型企业、SKU>1万、需求波动大的行业(如3C/快消)高阶预测模型
动态贝叶斯网络大型企业、SKU>1万、需求波动大的行业(如3C/快消)高阶预测模型
协同预测(CPFR)大型企业、SKU>1万、需求波动大的行业(如3C/快消)高阶预测模型

2.颗粒度选择

维度

SKU级预测

大类级预测

整体级预测

数据特征

数据稀疏(尤其长尾SKU)

数据较平稳

高度聚合,趋势明显

典型误差率

30%-50%(长尾品更高)

15%-25%

5%-10%

决策应用

采购订单/仓库补货

产能规划/原料采购

财务预算/战略规划

计算成本

高(需分布式计算)

灵活性

可捕捉单品波动

无法识别黑马单品

完全忽略结构变化

→实际不是颗粒度越细 预测就越准。

颗粒度选择策略:用最粗的颗粒度实现业务目标,仅在关键品项细化。

  • 战略层用整体预测 → 把握方向
  • 战术层用大类预测 → 优化资源
  • 执行层对头部SKU精细化 → 降本增效


3.在医药行业的应用

    医药特性:

    需求特性OTCRX生物制剂(含疫苗)
    1零售渠道主导(药店/电商占比高)受带量采购政策直接影响强突发性(如疫情爆发)
    2受广告投放和促销活动影响显著医院库存主导(占销量70%以上)超短效期
    3季节性波动明显(如感冒药冬季需求+200%)医生处方习惯决定销量接种率依赖政府计划

    药品分类预测需遵循 "三层递进原则"

    1. 强制分层:生物制剂/RX必须独立预测(人命关天+政策敏感)
    2. 推荐分层:OTC/中药/保健品按渠道特性细分(成本收益平衡)
    3. 可选合并:低值耗材等长尾品类(避免过度细化)

    预测模型

    特性

    Holt-Winters

    Prophet

    适用场景

    单一、稳定季节性数据

    复杂多季节性、含外部事件数据

    数据需求

    完整历史数据,明确周期

    支持缺失值、异常点,灵活处理多源数据

    灵活性

    低(固定季节周期)

    高(支持自定义季节性和节假日)

    计算复杂度

    简单(参数少)

    较高(需拟合非线性趋势)

    异常值处理

    敏感,需人工干预

    自动检测和调整

    可解释性

    高(直接分解趋势/季节)

    中(依赖可视化解释)

    1.模型对比

    模型基础与结构:

    Holt-Winters

    Prophet

    基于三重指数平滑(Triple Exponential Smoothing),直接建模时间序列的趋势季节性水平

    基于加法模型,将时间序列分解为趋势季节性节假日效应外部变量(可选)。

    仅支持单一季节性(如月/季度/年)。

    支持多个季节性(如年、周、日的季节性)。

    模型结构相对简单,参数少(平滑系数 α, β, γ)。

    模型结构更复杂,包含变点检测、可配置的趋势增长(线性/逻辑)和傅里叶级数季节性。

    季节性与节假日处理:

    Holt-WintersProphet
    季节性需手动指定周期(如 seasonal_periods=12),仅支持加法或乘法模型。使用傅里叶级数自动拟合季节性,支持多周期(如同时拟合周+年周期)。
    不支持节假日或事件的显式建模。内置对节假日/特殊事件的支持,可自定义影响范围和强度。

    自动化与易用性:

    Holt-WintersProphet
    参数需要手动调优(如平滑系数),对统计知识要求较高。高度自动化,提供默认参数,适合非专业用户。
    需自行处理缺失值和异常值。自动处理缺失值,鲁棒性更强,支持异常值检测。

    趋势建模:

    Holt-Winters

    Prophet

    趋势为线性(可扩展为阻尼趋势)。

    支持分段线性趋势逻辑增长趋势,自动检测变点(Trend Changepoints)。

    无法捕捉趋势变化(如市场突变)。

    可识别历史数据中的趋势转折点,适应长期趋势变化。

     适用场景:

    Holt-WintersProphet
    适合简单季节性数据(如月度销量、能源消耗)。适合复杂商业数据(如含节假日促销的零售数据、多周期影响的用户活跃度)。
    数据需完整,无大量缺失值或异常。对缺失值、异常值容忍度高,适合非平稳、有噪声的数据。

     二三方医药物流对比

    物流模式推荐模型核心原因
    二方物流(2PL)Holt-Winters数据简单稳定,需低成本、高可解释性方案,人工干预可行。
    三方物流(3PL)Prophet需求动态性强,需灵活整合多源数据与外部事件,自动化处理异常。
    对比维度二方物流(2PL)三方物流(3PL)
    适用模型Holt-WintersProphet
    核心场景单一业务源(如药企自有仓库),需求稳定、周期性明确(如季节性药品)。多客户、多品类混合需求(如疫苗、慢性病药),需灵活响应外部事件(促销、政策调整)。
    数据特征

    - 数据规范、完整

    - 周期性强(月/季度)

    - 历史数据充足

    - 数据多源、异构

    - 需求波动频繁

    可能含缺失值或异常点

    季节性处理固定周期(如12个月),仅支持单一季节性支持多季节周期(周、月、年)和节假日自定义
    异常值鲁棒性敏感,需人工干预修正异常数据自动检测并平滑异常点,支持外部事件标记(如疫情突发需求)
    外部变量支持不支持,仅依赖历史时序数据支持加入外部变量(如促销活动、温度波动、政策生效日期)
    实施复杂度

    - 参数少、调优简单

    - 适合IT资源有限的团队

    - 需配置季节性和节假日参数

    - 依赖数据清洗与特征工程

    典型用例连锁药店感冒药库存预测(稳定季节性)疫苗配送中心多客户需求预测(整合促销日历与突发订单)

    输出与诊断:

    Holt-WintersProphet
    提供模型系数(α, β, γ)和统计指标(AIC/BIC)。提供趋势、季节性和节假日的可视化分解图,直观展示各组分影响。
    预测结果较难解释。预测结果可解释性强,支持交互式图表分析。

    2.Prophet

    Prophet在医药物流中适用于需求预测、库存优化等场景,尤其在处理季节性和节假日效应时表现突出。但其在复杂外部因素和实时性要求高的场景需结合其他技术。实际应用中建议:

    1. 优先验证历史数据的季节性模式;
    2. 与业务部门合作定义关键事件变量;
    3. 针对冷链等特殊需求进行模型后处理。

    算法本质
    Prophet使用结构化时间序列模型(趋势+季节+节假日),通过梯度下降优化参数,属于监督学习框架。

    功能特性
    支持自动化特征工程(如傅里叶项、事件标记)、超参数调优(如季节性强度的MCMC采样),与XGBoost/LSTM同为数据驱动的预测工具。

    应用场景(医药物流):

    局限性:

    3.Holt-Winters

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值