目录
需求预测
1.方法选择
方法 | 适用范围 | 分类 |
---|---|---|
移动平均法 | 中小企业、SKU较少的卖家 | 低成本预测方案 |
Excel趋势线预测 | 中小企业、SKU较少的卖家 | 低成本预测方案 |
季节性系数法 | 中小企业、SKU较少的卖家 | 低成本预测方案 |
机器学习模型(XGBoost/LSTM神经网络) | 大型企业、SKU>1万、需求波动大的行业(如3C/快消) | 高阶预测模型 |
动态贝叶斯网络 | 大型企业、SKU>1万、需求波动大的行业(如3C/快消) | 高阶预测模型 |
协同预测(CPFR) | 大型企业、SKU>1万、需求波动大的行业(如3C/快消) | 高阶预测模型 |
2.颗粒度选择
维度 | SKU级预测 | 大类级预测 | 整体级预测 |
---|---|---|---|
数据特征 | 数据稀疏(尤其长尾SKU) | 数据较平稳 | 高度聚合,趋势明显 |
典型误差率 | 30%-50%(长尾品更高) | 15%-25% | 5%-10% |
决策应用 | 采购订单/仓库补货 | 产能规划/原料采购 | 财务预算/战略规划 |
计算成本 | 高(需分布式计算) | 中 | 低 |
灵活性 | 可捕捉单品波动 | 无法识别黑马单品 | 完全忽略结构变化 |
→实际不是颗粒度越细 预测就越准。
颗粒度选择策略:用最粗的颗粒度实现业务目标,仅在关键品项细化。
- 战略层用整体预测 → 把握方向
- 战术层用大类预测 → 优化资源
- 执行层对头部SKU精细化 → 降本增效
3.在医药行业的应用
医药特性:
需求特性 | OTC | RX | 生物制剂(含疫苗) |
---|---|---|---|
1 | 零售渠道主导(药店/电商占比高) | 受带量采购政策直接影响 | 强突发性(如疫情爆发) |
2 | 受广告投放和促销活动影响显著 | 医院库存主导(占销量70%以上) | 超短效期 |
3 | 季节性波动明显(如感冒药冬季需求+200%) | 医生处方习惯决定销量 | 接种率依赖政府计划 |
药品分类预测需遵循 "三层递进原则":
- 强制分层:生物制剂/RX必须独立预测(人命关天+政策敏感)
- 推荐分层:OTC/中药/保健品按渠道特性细分(成本收益平衡)
- 可选合并:低值耗材等长尾品类(避免过度细化)
预测模型
特性 | Holt-Winters | Prophet |
---|---|---|
适用场景 | 单一、稳定季节性数据 | 复杂多季节性、含外部事件数据 |
数据需求 | 完整历史数据,明确周期 | 支持缺失值、异常点,灵活处理多源数据 |
灵活性 | 低(固定季节周期) | 高(支持自定义季节性和节假日) |
计算复杂度 | 简单(参数少) | 较高(需拟合非线性趋势) |
异常值处理 | 敏感,需人工干预 | 自动检测和调整 |
可解释性 | 高(直接分解趋势/季节) | 中(依赖可视化解释) |
1.模型对比
模型基础与结构:
Holt-Winters | Prophet |
---|---|
基于三重指数平滑(Triple Exponential Smoothing),直接建模时间序列的趋势、季节性和水平。 | 基于加法模型,将时间序列分解为趋势、季节性、节假日效应和外部变量(可选)。 |
仅支持单一季节性(如月/季度/年)。 | 支持多个季节性(如年、周、日的季节性)。 |
模型结构相对简单,参数少(平滑系数 α, β, γ)。 | 模型结构更复杂,包含变点检测、可配置的趋势增长(线性/逻辑)和傅里叶级数季节性。 |
季节性与节假日处理:
Holt-Winters | Prophet |
---|---|
季节性需手动指定周期(如 seasonal_periods=12 ),仅支持加法或乘法模型。 | 使用傅里叶级数自动拟合季节性,支持多周期(如同时拟合周+年周期)。 |
不支持节假日或事件的显式建模。 | 内置对节假日/特殊事件的支持,可自定义影响范围和强度。 |
自动化与易用性:
Holt-Winters | Prophet |
---|---|
参数需要手动调优(如平滑系数),对统计知识要求较高。 | 高度自动化,提供默认参数,适合非专业用户。 |
需自行处理缺失值和异常值。 | 自动处理缺失值,鲁棒性更强,支持异常值检测。 |
趋势建模:
Holt-Winters | Prophet |
---|---|
趋势为线性(可扩展为阻尼趋势)。 | 支持分段线性趋势或逻辑增长趋势,自动检测变点(Trend Changepoints)。 |
无法捕捉趋势变化(如市场突变)。 | 可识别历史数据中的趋势转折点,适应长期趋势变化。 |
适用场景:
Holt-Winters | Prophet |
---|---|
适合简单季节性数据(如月度销量、能源消耗)。 | 适合复杂商业数据(如含节假日促销的零售数据、多周期影响的用户活跃度)。 |
数据需完整,无大量缺失值或异常。 | 对缺失值、异常值容忍度高,适合非平稳、有噪声的数据。 |
二三方医药物流对比
物流模式 | 推荐模型 | 核心原因 |
---|---|---|
二方物流(2PL) | Holt-Winters | 数据简单稳定,需低成本、高可解释性方案,人工干预可行。 |
三方物流(3PL) | Prophet | 需求动态性强,需灵活整合多源数据与外部事件,自动化处理异常。 |
对比维度 | 二方物流(2PL) | 三方物流(3PL) |
---|---|---|
适用模型 | Holt-Winters | Prophet |
核心场景 | 单一业务源(如药企自有仓库),需求稳定、周期性明确(如季节性药品)。 | 多客户、多品类混合需求(如疫苗、慢性病药),需灵活响应外部事件(促销、政策调整)。 |
数据特征 | - 数据规范、完整 - 周期性强(月/季度) - 历史数据充足 | - 数据多源、异构 - 需求波动频繁 可能含缺失值或异常点 |
季节性处理 | 固定周期(如12个月),仅支持单一季节性 | 支持多季节周期(周、月、年)和节假日自定义 |
异常值鲁棒性 | 敏感,需人工干预修正异常数据 | 自动检测并平滑异常点,支持外部事件标记(如疫情突发需求) |
外部变量支持 | 不支持,仅依赖历史时序数据 | 支持加入外部变量(如促销活动、温度波动、政策生效日期) |
实施复杂度 | - 参数少、调优简单 - 适合IT资源有限的团队 | - 需配置季节性和节假日参数 - 依赖数据清洗与特征工程 |
典型用例 | 连锁药店感冒药库存预测(稳定季节性) | 疫苗配送中心多客户需求预测(整合促销日历与突发订单) |
输出与诊断:
Holt-Winters | Prophet |
---|---|
提供模型系数(α, β, γ)和统计指标(AIC/BIC)。 | 提供趋势、季节性和节假日的可视化分解图,直观展示各组分影响。 |
预测结果较难解释。 | 预测结果可解释性强,支持交互式图表分析。 |
2.Prophet
Prophet在医药物流中适用于需求预测、库存优化等场景,尤其在处理季节性和节假日效应时表现突出。但其在复杂外部因素和实时性要求高的场景需结合其他技术。实际应用中建议:
- 优先验证历史数据的季节性模式;
- 与业务部门合作定义关键事件变量;
- 针对冷链等特殊需求进行模型后处理。
算法本质:
Prophet使用结构化时间序列模型(趋势+季节+节假日),通过梯度下降优化参数,属于监督学习框架。
功能特性:
支持自动化特征工程(如傅里叶项、事件标记)、超参数调优(如季节性强度的MCMC采样),与XGBoost/LSTM同为数据驱动的预测工具。
应用场景(医药物流):
局限性: