现在有一个问题,给你一个线性数组n,让你求第y小的数是多少?
正常人的思路都是先排序,然后直接输出,那我们用快排来写,他的时间复杂度O(NlogN)
最坏的话可能O(N^2),所以当数据量上来的时候很明显这种算法是低级的
那我们应该怎么去解决这个问题呢
很明显我们会选择线性时间选择,它的原理是什么呢?
其实你只要懂快排就懂线性,快排是不是把每个数找到他们应该在的位置最后来实现排序,那么我们是不是可以把数组n等分成y份,然后找出每一份中的中位数,再将每一份数组的中位数进行排序找出中位数中的中位数 z,再进行快排一样的流程,找出z在数组中应该在什么位置,然后z前面有多少个元素,z后面有多少个元素,如果z前面的元素小于等于k往前递归,大于前面的元素往后递归,递归的出口我们后面再讲,反正你这样一搞时间复杂度就是O(n)
那么我们现在来一个个解决问题,首先将数组分为y份,这么个分法呢,这里我们可以按五个元素一分,纯个人喜好,你愿意用多少就用多少
为了找出分好数组中的中位数,我们明显要用排序来写,我这里选择的是选择排序,你喜欢用什么就用什么,跟时间复杂度没关系,因为元素都是确定的里面就五个,时间复杂度都是o(1)
public static void Slsort(int[] a,int p,int r){
for(int i = p + 1;i <= r;i++){
int index = i;
for(int j = i + 1;j <= r;j++){
if(a[j] < a[index]){
index = j;
}
}
Swap(a,i,index);
}
}
下一个问题找中位数
tips:这里我们找中位数,只是要这五个里面元素中按照元素值排序的中位数下标,所以不需要在原数组内改变他们的位置,只要找的中位数数字的下标,返回就ok了
public static int SearchMid(int[] a,int l,int r){
int[] b = new int[r - l + 1];
for(int i = l;i <= r;i++){ //数组a是从l~r,b不是
b[i - l] = a[i];
}
Slsort(b,0,r - l);
for (int i = l; i <= r; ++i)
{
if (a[i] == b[(r - l + 1) / 2])
{
return i; //返回的是a里面的中位数下标
}
}
return 0;
}
下一个问题找中位数在数组中应该在的位置,代码跟快排的基本一致,看不懂可以看我的上一篇快排
public static int Partition(int[] array,int l,int r,int x){
Swap(array,r,x);
int j = l;
int i = l;
int pivot = r;
while(j < pivot){
if(array[j] < array[pivot]){
Swap(array,i,j);
i++;
j++;
}
if(array[j] > array[pivot]){
j++;
}
}
Swap(array,i,pivot);
return i;
}
最终要解决的问题找k是哪个元素
这个递归函数一定要有递归出口,那我们怎么找递归出口呢,很明显,我每次递归都会把所有元素分组,分完组之后,我们要找筛选出中位数,然后进行下次递归,如果我们下次递归的的元素连五个都没有,那么我们就可以直接输出结果了,假如让你找第三小的元素你很好理解,那么找第11小的呢,所以你看到我写了当k >len,下一次要找的就是k - len,为什么呢明显你要的数前面十个都没有,那么他只可能是后面十个数的第一小的元素咯,那么我是不是只要从第11个元素开始找倒数第一小的元素就能找到第11小的元素了所以递归的出口就是 r - l + 1<= 5.
tips:如果元素总数不是5的倍数怎么办呢?这里我选择了一个math函数,我是以5为基准划分加入最后一组只剩下四个或三个等等小于五个的情况,我就会以剩下的所有元素为一组来找出他们的中位数
public static int select(int[] a, int l, int r, int k) {
if (r - l + 1 <= 5) {
Slsort(a, l, r);
return a[l + k - 1]; // 返回第k小的元素
}
// 将数组分成若干组,每组5个元素
for (int i = 0; i < (r - l + 1) / 5; i++) {
int left = l + 5 * i; // 当前组的左边界
int right = Math.min(l + 5 * i + 4, r); // 当前组的右边界
int mid = SearchMid(a, left, right); // 找到当前组的中位数
Swap(a, mid, l + i);
}
// 对中位数组成的新数组进行递归调用select
int pivot = select(a, l, l + (r - l + 1) / 5 - 1, (r - l + 6) / 10);
// 根据pivot进行分区
int i = Partition(a, l, r, pivot);
int len = i - l + 1;
if (k <= len) {
return select(a, l, i, k);
} else {
return select(a, i + 1, r, k - len);
}
}
总代码
import java.util.Random;
import java.util.Scanner;
//TIP 要<b>运行</b>代码,请按 <shortcut actionId="Run"/> 或
// 点击装订区域中的 <icon src="AllIcons.Actions.Execute"/> 图标。
public class Main {
public static void Swap(int[] array, int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
public static void Slsort(int[] a,int p,int r){
for(int i = p + 1;i <= r;i++){
int index = i;
for(int j = i + 1;j <= r;j++){
if(a[j] < a[index]){
index = j;
}
}
Swap(a,i,index);
}
}
public static int Partition(int[] array,int l,int r,int x){
Swap(array,r,x);
int j = l;
int i = l;
int pivot = r;
while(j < pivot){
if(array[j] < array[pivot]){
Swap(array,i,j);
i++;
j++;
}
if(array[j] > array[pivot]){
j++;
}
}
Swap(array,i,pivot);
return i;
}
public static int SearchMid(int[] a,int l,int r){
int[] b = new int[r - l + 1];
for(int i = l;i <= r;i++){ //数组a是从l~r,b不是
b[i - l] = a[i];
}
Slsort(b,0,r - l);
for (int i = l; i <= r; ++i)
{
if (a[i] == b[(r - l + 1) / 2])
{
return i; //返回的是a里面的中位数下标
}
}
return 0;
}
public static int select(int[] a, int l, int r, int k) {
if (r - l + 1 <= 5) {
Slsort(a, l, r);
return a[l + k - 1]; // 返回第k小的元素
}
// 将数组分成若干组,每组5个元素
for (int i = 0; i < (r - l + 1) / 5; i++) {
int left = l + 5 * i; // 当前组的左边界
int right = Math.min(l + 5 * i + 4, r); // 当前组的右边界
int mid = SearchMid(a, left, right); // 找到当前组的中位数
Swap(a, mid, l + i);
}
// 对中位数组成的新数组进行递归调用select
int pivot = select(a, l, l + (r - l + 1) / 5 - 1, (r - l + 6) / 10);
// 根据pivot进行分区
int i = Partition(a, l, r, pivot);
int len = i - l + 1;
if (k <= len) {
return select(a, l, i, k);
} else {
return select(a, i + 1, r, k - len);
}
}
public static void main(String[] args) {
System.out.print("请输入你你想要找第k小的数在这个数组中");
Scanner sc = new Scanner(System.in);
int k = sc.nextInt();
int[] a = { 9, 12,15,11, 13, 3, 1, 8, 14,4, 6, 5, 7, 2
};
int n = select(a,0,a.length - 1,k);
System.out.printf("第%d小的数是%d",k,n);
}
}