智泰模型的核心实现

智泰模型的核心实现,包括:

  1. 拟人化处理器(HumanizationProcessor)
  2. 推理模型(ReasoningModel)
  3. 量子推理增强(QuantumReasoning)
  4. 多模态推理(MultiModalReasoning)
  5. 推理结果结构(ReasoningResult)
  6. 智泰模型主类(ZhiTaiModel)
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.quantization import quantize_dynamic, QuantType
    from transformers import GPT2Tokenizer, GPT2LMHeadModel
    from qiskit import QuantumCircuit, transpile, Aer, execute
    from qiskit_ibm_runtime import QiskitRuntimeService
    from qiskit_machine_learning.algorithms import VQC
    from qiskit_optimization.algorithms import QAOAOptimizer
    import logging
    import numpy as np
    
    logger = logging.getLogger(__name__)
    
    class HumanizationProcessor:
        def __init__(self):
            self.voice_style = "friendly"  # 默认语音风格为友好
            self.response_style = "casual"  # 默认响应风格为随意
    
        def humanize(self, reasoning_result, emotion):
            """对推理结果进行拟人化处理"""
            # 根据情感调整语音和响应风格
            if emotion == "happy":
                self.voice_style = "cheerful"
                self.response_style = "playful"
            elif emotion == "sad":
                self.voice_style = "soft"
                self.response_style = "comforting"
            elif emotion == "angry":
                self.voice_style = "calm"
                self.response_style = "soothing"
    
            # 根据语音风格调整响应内容
            if self.voice_style == "cheerful":
                reasoning_result.details = f"哇!{reasoning_result.details}"
            elif self.voice_style == "soft":
                reasoning_result.details = f"嗯...{reasoning_result.details}"
            elif self.voice_style == "calm":
                reasoning_result.details = f"好的,{reasoning_result.details}"
    
            # 根据响应风格调整动作
            if self.response_style == "playful":
                reasoning_result.action = "play_game"
            elif self.response_style == "comforting":
                reasoning_result.action = "play_music"
            elif self.response_style == "soothing":
                reasoning_result.action = "recognize_image"
    
            return reasoning_result
    
    class ReasoningModel:
        def __init__(self):
            self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            self.model = GPT2LMHeadModel.from_pretrained('gpt2')
            self.model.eval()
    
        def analyze(self, command, context, related_info):
            # 使用GPT模型进行推理
            input_text = f"Command: {command}\nContext: {context}\nRelated Info: {related_info}"
            inputs = self.tokenizer.encode(input_text, return_tensors='pt')
            outputs = self.model.generate(inputs, max_length=100, num_return_sequences=1)
            result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            return self._parse_result(result)
    
        def _parse_result(self, result):
            # 解析推理结果
            # 这里可以根据具体需求进行解析
            return ReasoningResult(action="default", details=result)
    
    class QuantumReasoning:
        def __init__(self):
            self.quantum_circuit = QuantumCircuit(3)
            self.quantum_circuit.h([0, 1, 2])
    
        def enhance(self, reasoning_result):
            # 使用量子计算增强推理结果
            simulator = Aer.get_backend('qasm_simulator')
            compiled_circuit = transpile(self.quantum_circuit, simulator)
            job = execute(compiled_circuit, simulator, shots=1024)
            result = job.result()
            counts = result.get_counts(compiled_circuit)
            # 这里可以根据量子计算结果调整推理结果
            reasoning_result.details += f"\nQuantum Enhancement: {counts}"
            return reasoning_result
    
    class MultiModalReasoning:
        def __init__(self):
            self.emotion_analyzer = EmotionAnalyzer()
    
        def process(self, reasoning_result, current_emotion):
            # 结合情感分析进行多模态推理
            if current_emotion == "happy":
                reasoning_result.action = "play_game"
            elif current_emotion == "sad":
                reasoning_result.action = "play_music"
            return reasoning_result
    
    class ReasoningResult:
        def __init__(self, action, details):
            self.action = action
            self.details = details
    
    class ZhiTaiModel:
        def __init__(self):
            self.personalization_engine = PersonalizationEngine()
            self.emotion_analyzer = EmotionAnalyzer()
            self.multi_modal_manager = MultiModalManager()
            self.reasoning_model = ReasoningModel()
            self.quantum_reasoning = QuantumReasoning()
            self.humanization_processor = HumanizationProcessor()
    
        def process(self, command, context):
            # 获取相关历史学习数据
            relevant_data = self.get_relevant_learning_data(command, context)
            
            # 个性化处理
            personalized_command = self.personalization_engine.personalize_command(command)
            
            # 情感分析
            emotion = self.emotion_analyzer.analyze_emotion(command)
            
            # 多模态处理
            multi_modal_data = self.multi_modal_manager.process(command)
            
            # 推理模型分析,结合历史学习数据
            reasoning_result = self.reasoning_model.analyze(personalized_command, context, multi_modal_data)
            if relevant_data:
                # 如果有相关历史数据,调整推理结果
                reasoning_result = self.adjust_with_learning_data(reasoning_result, relevant_data)
            
            # 量子计算增强
            quantum_reasoning_result = self.quantum_reasoning.enhance(reasoning_result)
            
            # 拟人化处理
            final_result = self.humanization_processor.humanize(quantum_reasoning_result, emotion)
            
            return final_result

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值