智泰模型的核心实现,包括:
- 拟人化处理器(HumanizationProcessor)
- 推理模型(ReasoningModel)
- 量子推理增强(QuantumReasoning)
- 多模态推理(MultiModalReasoning)
- 推理结果结构(ReasoningResult)
- 智泰模型主类(ZhiTaiModel)
import torch import torch.nn as nn import torch.optim as optim from torch.quantization import quantize_dynamic, QuantType from transformers import GPT2Tokenizer, GPT2LMHeadModel from qiskit import QuantumCircuit, transpile, Aer, execute from qiskit_ibm_runtime import QiskitRuntimeService from qiskit_machine_learning.algorithms import VQC from qiskit_optimization.algorithms import QAOAOptimizer import logging import numpy as np logger = logging.getLogger(__name__) class HumanizationProcessor: def __init__(self): self.voice_style = "friendly" # 默认语音风格为友好 self.response_style = "casual" # 默认响应风格为随意 def humanize(self, reasoning_result, emotion): """对推理结果进行拟人化处理""" # 根据情感调整语音和响应风格 if emotion == "happy": self.voice_style = "cheerful" self.response_style = "playful" elif emotion == "sad": self.voice_style = "soft" self.response_style = "comforting" elif emotion == "angry": self.voice_style = "calm" self.response_style = "soothing" # 根据语音风格调整响应内容 if self.voice_style == "cheerful": reasoning_result.details = f"哇!{reasoning_result.details}" elif self.voice_style == "soft": reasoning_result.details = f"嗯...{reasoning_result.details}" elif self.voice_style == "calm": reasoning_result.details = f"好的,{reasoning_result.details}" # 根据响应风格调整动作 if self.response_style == "playful": reasoning_result.action = "play_game" elif self.response_style == "comforting": reasoning_result.action = "play_music" elif self.response_style == "soothing": reasoning_result.action = "recognize_image" return reasoning_result class ReasoningModel: def __init__(self): self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2') self.model = GPT2LMHeadModel.from_pretrained('gpt2') self.model.eval() def analyze(self, command, context, related_info): # 使用GPT模型进行推理 input_text = f"Command: {command}\nContext: {context}\nRelated Info: {related_info}" inputs = self.tokenizer.encode(input_text, return_tensors='pt') outputs = self.model.generate(inputs, max_length=100, num_return_sequences=1) result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return self._parse_result(result) def _parse_result(self, result): # 解析推理结果 # 这里可以根据具体需求进行解析 return ReasoningResult(action="default", details=result) class QuantumReasoning: def __init__(self): self.quantum_circuit = QuantumCircuit(3) self.quantum_circuit.h([0, 1, 2]) def enhance(self, reasoning_result): # 使用量子计算增强推理结果 simulator = Aer.get_backend('qasm_simulator') compiled_circuit = transpile(self.quantum_circuit, simulator) job = execute(compiled_circuit, simulator, shots=1024) result = job.result() counts = result.get_counts(compiled_circuit) # 这里可以根据量子计算结果调整推理结果 reasoning_result.details += f"\nQuantum Enhancement: {counts}" return reasoning_result class MultiModalReasoning: def __init__(self): self.emotion_analyzer = EmotionAnalyzer() def process(self, reasoning_result, current_emotion): # 结合情感分析进行多模态推理 if current_emotion == "happy": reasoning_result.action = "play_game" elif current_emotion == "sad": reasoning_result.action = "play_music" return reasoning_result class ReasoningResult: def __init__(self, action, details): self.action = action self.details = details class ZhiTaiModel: def __init__(self): self.personalization_engine = PersonalizationEngine() self.emotion_analyzer = EmotionAnalyzer() self.multi_modal_manager = MultiModalManager() self.reasoning_model = ReasoningModel() self.quantum_reasoning = QuantumReasoning() self.humanization_processor = HumanizationProcessor() def process(self, command, context): # 获取相关历史学习数据 relevant_data = self.get_relevant_learning_data(command, context) # 个性化处理 personalized_command = self.personalization_engine.personalize_command(command) # 情感分析 emotion = self.emotion_analyzer.analyze_emotion(command) # 多模态处理 multi_modal_data = self.multi_modal_manager.process(command) # 推理模型分析,结合历史学习数据 reasoning_result = self.reasoning_model.analyze(personalized_command, context, multi_modal_data) if relevant_data: # 如果有相关历史数据,调整推理结果 reasoning_result = self.adjust_with_learning_data(reasoning_result, relevant_data) # 量子计算增强 quantum_reasoning_result = self.quantum_reasoning.enhance(reasoning_result) # 拟人化处理 final_result = self.humanization_processor.humanize(quantum_reasoning_result, emotion) return final_result