自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1179)
  • 资源 (66)
  • 收藏
  • 关注

原创 ConCap:面向基于流的入侵检测系统的实用网络流量生成工具

摘要(147字) 本文提出ConCap,一种开源工具,用于生成自动标记的网络流量数据,以解决网络入侵检测系统(NIDS)研究中长期存在的数据质量与可用性问题。ConCap通过容器化环境模拟真实网络行为,支持灵活配置恶意活动(如端口扫描、暴力破解)并生成对应的标记NetFlows,其数据在功能上等同于真实网络流量(实验验证差异<10%)。工具支持复杂攻击链(如MITRE ATT&CK战术)和多主机场景,仅需共享轻量级配置文件即可重现实验,显著提升研究可复现性。实验表明,ConCap生成的标记数据

2026-01-26 07:43:05 618

原创 KinGuard:基于层次化亲属关系感知的指纹技术防御大语言模型窃取

通过12个基准测试评估对模型性能的影响,涵盖逻辑与常识推理(ANLI R1-3[24]、ARC[5]、OpenBookQA[23]、Winogrande[28]、LogiQA[20])、科学理解(SciQ[33])和语言蕴含(BoolQ[4]、RTE[8]、WiC[25]、WSC[17]、CoPA[26]、MultiRC[15])。证实核心假设:亲属图编码的结构化关系知识至关重要,迫使模型将指纹内化为深层语义连接(非表面模式),形成持久的基于知识的所有权标记(与LLM知识内化研究一致[21])。

2026-01-26 07:42:43 545

原创 先进空中交通与电动垂直起降飞行器安全挑战与解决方案综述

摘要:本文系统综述了先进空中交通系统(AAM)及电动垂直起降飞行器(eVTOL)面临的网络安全威胁与防御机制。研究聚焦GNSS干扰/欺骗、空中交通管制射频滥用、TCAS/ADS-B攻击、电子飞行包后门等关键威胁向量,分析了航空器自动化与互联性引入的新风险。针对这些威胁,文章提出了多传感器融合、信号认证、轻量级加密等防御策略,并构建了面向AAM生态系统的安全架构框架。研究揭示了当前存在的标准化认证协议缺失、对抗性验证不足等开放性问题,强调需要跨学科合作开发满足航空严格要求的可认证安全解决方案。本文为保障未来城

2026-01-26 07:42:32 558

原创 面向资源受限物联网设备的硬件感知机器学习和深度学习入侵检测

本文提出了一种面向物联网和工业物联网的硬件感知入侵检测系统,在严格边缘设备约束下优化基于树模型和深度神经网络。通过约束网格搜索和硬件感知神经架构搜索,在Edge-IIoTset数据集上实现了LightGBM 95.3%准确率(75KB闪存)和CNN 97.2%准确率(190KB闪存)。Raspberry Pi 3B+部署验证了基于树模型30ms内完成推理,CNN在准确性优先场景仍可行。研究凸显了硬件约束模型设计在边缘实时入侵检测中的实用性,为准确性与资源效率平衡提供了解决方案。

2026-01-24 07:11:28 730

原创 重新思考设备端大语言模型推理:为什么类比映射在物联网DDoS检测中优于抽象思考

本文提出了一种结合思维链(CoT)推理与检索增强生成(RAG)的设备端大语言模型(ODLLM)框架,用于物联网边缘环境中的DDoS攻击检测。研究评估了LLaMA3.2和Gemma3等紧凑模型在不同提示策略下的表现,发现少样本RAG方法显著提升了检测性能,宏平均F1分数最高达0.85。实验结果表明,基于示例的推理策略优于抽象推理方法,特别是在资源受限的小型ODLLM上。该框架有效解决了物联网环境中实时威胁检测面临的隐私和延迟问题,为边缘计算场景下的网络安全防护提供了新思路。

2026-01-24 07:11:11 580

原创 预测入侵检测系统警报时间序列中的尾部风险升级

摘要:本研究提出了一种基于时间特征分析的入侵检测系统(IDS)警报风险评估框架。通过将金融领域的极端状态预测方法应用于IDS数据,我们构建了包含警报强度、波动率和动量指标的时间特征集。实验表明,梯度提升决策树模型能够有效预测未来30分钟内的高强度攻击状态(95%分位数),准确率达91%,召回率89%。研究证实IDS警报流中存在可预测的早期预警信号,并开发了可视化工具辅助防御决策。该方法为网络威胁态势评估提供了新的时间维度分析视角,有助于缓解安全运营中心的警报过载问题。

2026-01-24 07:10:59 474

原创 基于主动式网络望远镜对Log4Shell漏洞利用的纵向测量研究

大家读完觉得有帮助记得关注和点赞!!!摘要2021年12月披露的Log4Shell漏洞引发了一波前所未有的全球扫描和利用活动。近期的一项研究提供了重要的初步见解,但在时间跨度和地理范围上存在较大局限,主要关注欧洲和美国的网络望远镜部署,并覆盖了漏洞披露后的立即反应阶段。因此,对于漏洞利用行为的长期演变及其区域特征,我们仍了解不足。本文基于一个部署在印度的主动式网络望远镜,对2021年12月至2025年10月期间观测到的与Log4Shell相关的流量进行了一项纵向测量研究。这个观测点使我们能够考察初始爆发阶段

2026-01-23 07:27:26 528

原创 AI驱动的网络安全威胁:新兴风险与防御策略综述

诸如"Deepfake-Eval-2024"之类的基准测试显示,在不受控制的真实世界条件下,视频、音频和图像的AUC分数显著下降(分别为50%、48%和45%)[4]。人工智能的双重使用性质正在彻底改变网络安全格局,在四个主要类别中引入新的威胁:深度伪造和合成媒体、对抗性AI攻击、自动化恶意软件和AI驱动的社会工程。我们的研究结果强调了可解释、跨学科和符合法规的AI防御系统的紧迫性,以维护数字生态系统中的信任和安全。对抗性AI攻击指的是输入数据的扰动和针对AI模型弱点的方法,以产生不正确或不想要的输出。

2026-01-23 07:27:15 720

原创 IMS:面向安全SoC的智能硬件监控系统

摘要在现代片上系统(SoC)中,高级可扩展接口(AXI)协议存在安全漏洞,可通过违反协议的攻击导致部分或完全拒绝服务(DoS)。现有的防护措施缺乏专用的实时协议语义分析,并且规避了协议合规性检查。本文针对这一AXI漏洞问题,提出了一种用于实时检测AXI协议违规的智能硬件监控系统(IMS)。IMS是一个利用神经网络实现高检测精度的硬件模块。对于模型训练,我们通过头部字段操纵和系统性恶意操作执行DoS攻击,同时记录AXI事务以构建训练数据集。然后,我们部署了一个量化优化的神经网络,实现了98.7%的检测精度,延

2026-01-23 07:27:05 513

原创 基于API调用的恶意软件检测:一项可复现性研究

摘要:本研究成功复现了Fellicious等人提出的基于API调用频率分析的恶意软件检测方法。使用原始公开数据集(250,533训练样本,83,511测试样本),我们验证了单文法、双文法、三文法及组合n-gram四种模型变体。在最优API调用长度2,500处,所有模型的F1分数较原始结果提升0.99%-2.57%,其中单文法模型达到最佳性能(F1=0.8717)。三次独立实验显示结果高度一致(标准差<0.5%),证实该方法具有优异的可复现性。研究表明顺序无关的API调用频率分析能有效检测恶意软件,为轻

2026-01-22 07:53:16 519

原创 集成APK图像和文本数据以增强威胁检测:一种面向Android恶意软件的多模态深度学习方法

本文提出了一种结合图像和文本特征的多模态深度学习框架来增强Android恶意软件检测。研究系统评估了不同图像类型(RGB/灰度)和分辨率(128x128至512x512)对CNN模型性能的影响,发现高分辨率RGB图像(特别是512x512)配合ResNet-152和EfficientNet-B4等模型效果最佳。同时,研究探索了通过LLaMA-2提取文本特征并与图像特征融合的多模态方法,但受限于34个样本的小数据集,CLIP模型表现欠佳(准确率仅50%)。结果表明,在现有数据规模下,基于图像的单一模态方法(如

2026-01-22 07:53:06 505

原创 SGX应用程序克隆攻击的真实威胁

可信执行环境(TEE)如Intel SGX面临回滚和克隆攻击威胁。本文系统分析了72个SGX应用,发现约20%存在克隆攻击漏洞,包括依赖单调计数器的应用。研究识别出三类克隆攻击:针对内存键值存储的FIm攻击、针对持久存储的ForKVS攻击,以及破坏隐私保护的BUG攻击。数据库应用尤其脆弱(64%受影响)。研究揭示了当前SGX安全方案对克隆攻击防护不足的问题,为TEE安全实践提供了重要参考。

2026-01-22 07:52:57 479

原创 使用基于数独算法增强安全性的多媒体数据高级加密技术

本文提出了一种基于数独的多媒体加密方法,可应用于图像、音频和视频数据。该方法通过时间戳动态生成密钥,结合填充、乱序、数独变换和旋转等多重加密步骤,实现高安全性加密。实验结果表明,该算法对图像加密的NPCR值接近100%,音频加密的SNR超过60dB,能有效抵抗暴力破解和差分攻击。相比传统加密算法,该方法在保持加密质量的同时具有更高的处理效率,为多媒体数据安全传输提供了新方案。未来工作将重点优化UACI指标并实现实时跨平台应用。

2026-01-21 08:21:22 572

原创 AJAR:用于红队测试的自适应越狱架构

本文提出了AJAR(自适应越狱架构),这是一个协议驱动的红队测试框架,用于评估LLM智能体的安全性。AJAR通过模型上下文协议(MCP)将攻击策略与执行解耦,使审计员智能体能够动态调用X-Teaming等算法进行多轮越狱测试。案例研究表明,工具使用对安全性的影响具有"双刃剑"效应:严格的工具格式要求可能干扰基于角色的攻击,但同时也为间接代码执行提供了新的攻击途径。AJAR为智能体安全评估提供了标准化框架,其开源实现可在GitHub获取。这项研究揭示了从聊天机器人到智能体的转变带来的新型安

2026-01-21 08:21:14 656

原创 用于优化医院网络应对网络攻击弹性的防御者-攻击者-防御者模型

大家读完觉得有帮助记得关注和点赞!!!摘要考虑到影响多家医院的网络攻击日益频繁,在网络层面提升弹性至关重要。存在多种提升网络攻击弹性的对策,例如部署强化IT基础设施以限制其影响的控制措施,或启用资源共享、患者转移和备用容量,以维持医院在遭受攻击后的服务。然而,在有限的预算以及维持医院高效日常运营与投资灾难防备的优先事项相互竞争的背景下,从这些广泛的对策中确定最具成本效益的组合是一项复杂的挑战。为应对这些挑战,我们提出了一个防御者-攻击者-防御者优化模型,以支持决策者识别有效策略,提升医院网络应对网络攻击的弹

2026-01-21 08:21:05 545

原创 基于扩散模型增强的多目标优化用于提高无人机使能物联网中的森林监测效率

本文提出了一种基于无人机使能的物联网(IoT)系统用于高效森林监测的方法。针对森林监测中计算延迟、能量消耗和计算资源优化之间的权衡问题,构建了一个多目标优化框架。由于该框架包含连续和离散解空间,研究团队提出了一种改进的多目标灰狼优化器(IMOGWO),整合了扩散模型更新机制、准反向学习策略和离散解更新机制。仿真结果表明:在小规模网络(6架无人机+50个传感器节点)中,IMOGWO比次优基准降低运动能耗53.32%和计算资源9.83%;在大规模网络(8架无人机+100个传感器节点)中,分别降低41.81%和7

2026-01-20 07:56:09 740

原创 物联网网络中的多卫星非正交多址不规则重复时隙ALOHA

本文研究了6G时代非地面网络中物联网设备的随机接入问题,提出了一种结合NOMA和IRSA协议的改进方案。通过理论分析和仿真验证,重点评估了多卫星接收机对系统性能的影响,推导了丢包率下界和能量效率表达式。结果表明,增加接收机数量能显著提升性能,但存在边际效益递减现象。研究还揭示了信道条件、度数分布与能量效率之间的关键权衡,为未来物联网网络设计提供了重要参考。

2026-01-20 07:55:59 1256

原创 低空无线网络中安全感知的联合感知、通信与计算优化

本文研究了低空无线网络(LAWNs)中集成感知、通信与计算(ISCC)的性能优化问题,重点考虑了保密通信约束。通过推导波束方向图误差、保密速率和信息年龄(AoI)作为性能指标,构建了一个多目标优化问题。提出了一种基于深度Q网络(DQN)的多目标进化算法,能够自适应地选择进化算子。仿真结果表明,与基线算法相比,所提方法在感知精度、通信保密性和信息新鲜度之间实现了更优的平衡,为低空应用提供了更可靠的ISCC性能保障。

2026-01-20 07:55:49 584

原创 面向三维计算连续体中无服务器AI的混合硬件加速

摘要:本文提出盖亚(Gaia),一种支持无服务器AI工作负载的GPU即服务架构。针对三维计算连续体(边缘-云-空间)中硬件加速管理难题,盖亚创新性地结合了静态执行模式识别器和动态运行时适配机制。通过部署时自动分析函数代码特征,识别四种执行模式(cpu/gpu_preferred等),并在运行时根据SLO动态调整硬件后端。实验表明,盖亚能降低95%的端到端延迟,在矩阵乘法、LLM推理等场景中实现最优的硬件资源分配。该方案有效解决了异构环境下GPU资源利用率低、开发复杂等问题,为无服务器计算提供了自动化的硬件加

2026-01-19 07:21:42 996

原创 面向数字孪生中3D世界重建的材料感知高斯泼溅

本文提出了一种仅使用相机的数字孪生3D重建方法,通过结合3D高斯泼溅和基于物理的材料分配,实现了与激光雷达-相机融合相媲美的传感器模拟精度。该方法从多视角图像重建场景,利用视觉模型提取语义材料信息,并将高斯表示转换为带有材料标签的网格表面。实验验证表明,该方法在保持逼真渲染质量的同时,反射率预测精度接近基于激光雷达的方法(MAE 10.05 vs 10.14),且避免了激光雷达硬件和复杂标定的需求。这项研究为ADAS开发提供了一种更简便的传感器模拟方案。

2026-01-19 07:21:33 799

原创 T3-Tracer:一种用于音频伪造检测和定位的三级时间感知框架

本文提出了一种针对部分音频伪造检测的新方法T3-Tracer。该方法通过多粒度时间建模,在帧、片段和音频三个级别联合分析音频特征,有效捕捉篡改痕迹。核心创新包括:1)帧-音频特征聚合模块(FA-FAM)整合帧内异常与全局语义不一致性;2)段级多尺度差异感知模块(SMDAM)检测伪造边界;3)交叉注意力机制融合多级特征。实验表明,该方法在三个数据集上均达到最优性能,在最具挑战性的ASVS2019-PS数据集上EER降低至7.41%,验证了多级时间建模的有效性。

2026-01-19 07:21:25 927

原创 通过对网络空间日志与物理测量的联合分析区分故障与网络攻击

摘要:本文提出了一种创新方法,用于区分分布式能源资源系统(DER)中未被检测到的故障与网络攻击。传统方法依赖物理定律或物理测量,存在处理噪声效率低、数据不平衡等问题。本研究通过整合物理侧测量和网络空间信息,开发了面向虚拟物理变量的污点分析技术(PVOTA),构建依赖图并设计特定模式来弥合网络与物理侧的语义鸿沟。通过四个案例研究(涉及虚假数据注入攻击、未被检测故障和内存损坏攻击),验证了该方法的有效性。该方法显著减少了人工分析时间,为DER系统安全分析提供了新思路。未来工作将致力于自动化模式匹配推理过程。

2026-01-16 07:11:17 773

原创 通过使用大语言模型进行威胁知情的证据映射实现自动化的事件后政策差距分析

实验结果表明,基于LLM的流程能够解读源自日志的证据,识别不充分或缺失的政策控制措施,并生成具有明确证据到政策可追溯性的、可操作的修复建议。尽管先前的工作已经探索了将LLM用于孤立的任务,如日志分析或政策合规性检查[Zhang2025Survey, Cadet2024Compliance],但很少有研究考察它们在整合技术证据与面向治理的政策评估的事件后审查工作流中的应用。通过将每个识别出的政策差距基于可验证的日志模式和具体的政策条款,该系统解决了在审计关键环境中采用LLM的一个常见障碍:信任。

2026-01-16 07:11:03 605

原创 多攻击者场景下的自私挖矿:对Nakamoto、Fruitchain和Strongchain的实证评估

本研究通过构建统一的随机模拟框架,评估了Nakamoto共识、Fruitchain和Strongchain三种共识协议对自私挖矿攻击的抵抗能力。研究重点分析了单攻击者和多攻击者场景下的获利阈值,验证了现有文献结果并首次获得了多项新发现。结果表明,Strongchain表现最优,单攻击者阈值为46%,双攻击者为32%;Fruitchain次之,单攻击者阈值为38%。研究发现这些协议的防御能力基本不受网络连接质量影响,且随着攻击者数量增加,个体获利阈值降低但始终高于Nakamoto共识。研究为区块链安全提供了实

2026-01-16 07:10:52 574

原创 知识到数据:基于LLM的结构化网络流量合成,用于无测试台的IDS评估

本文研究了利用大型语言模型(LLM)生成结构化网络安全数据集的方法,以解决真实网络流量数据获取困难的问题。通过结合协议文档、攻击语义和统计规则,研究提出了一种无需微调或访问原始样本的LLM驱动生成方法。以AWID3 IEEE 802.11数据集为案例,研究评估了四个先进LLM生成数据的保真度,采用多级验证框架包括统计相似性测试、特征分布分析和跨域分类评估。结果表明,在明确约束下,LLM生成的数据能紧密逼近真实网络流量的统计和结构特征,使分类器在真实样本上达到0.956的F1分数。该方法为入侵检测研究提供了无

2026-01-15 11:28:41 581

原创 大语言模型评估面向安全运营中心的多视角报告评估设计

本文摘要: 本研究提出了一种利用大型语言模型(LLM)评估安全运营中心(SOC)分析报告质量的新方法。首先通过文献综述和与15名SOC从业者的访谈,构建了包含11个评估维度的"分析师视角检查清单"。基于此,研究者设计了MESSALA框架,创新性地引入两种技术:细粒度指导方针将检查清单转化为可操作的评估标准;多视角评估整合了LLM的高级评估(关注表面特征)和深度评估(基于上下文分析)。实验表明,MESSALA的评估结果与资深SOC分析师判断的相关系数达到0.64(GPT-4.1),显著优于

2026-01-15 11:28:31 580

原创 工业4.0中的组织学习

大家读完觉得有帮助记得关注和 点赞!!!摘要高级动态安全学习(DSL)过程模型是本文提出的一种工业4.0网络安全事件响应架构。该模型通过将Argyris和Schön的双环学习理论与Crossan的4I组织学习框架相结合,解决了跨复杂信息物理系统的主动性和反思性网络安全治理问题。鉴于65%的工业企业每年遭受勒索软件攻击,且其中许多企业缺乏网络安全意识,这揭示了网络威胁的严重性。该范式中的前馈和反馈学习循环有助于促进战略转型和持续增长。DSL模型通过弥合运营障碍和促进系统韧性,帮助工业4.0组织适应由预计达到1

2026-01-15 11:28:07 551

原创 使用MMS流量检测和预防电力系统中的过程干扰攻击:一个EPIC案例研究

大家读完觉得有帮助记得关注和点赞!!!摘要智能电网因其依赖互连的通信网络而日益暴露于复杂的网络威胁之下,乌克兰电网遭受的网络攻击等真实世界事件已证明了这一点。在基于IEC 61850的智能变电站中,制造报文规范(MMS)协议在TCP/IP之上运行,以促进SCADA系统与现场设备(如智能电子设备IED和可编程逻辑控制器PLC)之间的通信。虽然MMS实现了高效的监控和控制,但攻击者可以利用它来生成看似合法的数据包进行侦察、未经授权的状态读取和恶意命令注入,从而破坏电网运行。在本工作中,我们为符合IEC 6185

2026-01-14 08:02:36 528

原创 HoneyTrap:通过弹性多智能体防御将大型语言模型攻击者诱骗至蜜罐陷阱

大家读完觉得记得关注和点赞!!!摘要越狱攻击对大型语言模型构成重大威胁,使攻击者能够绕过安全防护。然而,现有的被动防御方法难以跟上快速演变的多次越狱攻击,攻击者不断深化攻击以利用漏洞。为应对这一关键挑战,我们提出了HoneyTrap,一个新颖的、利用协作式防御者来对抗越狱攻击的欺骗性LLM防御框架。它集成了四个防御智能体:威胁拦截器、误导控制器、取证追踪器和系统协调器,每个智能体执行专门的安全角色并协作完成欺骗性防御。为确保全面评估,我们引入了MTJ-Pro,一个具有挑战性的多轮渐进式越狱数据集,它结合了七

2026-01-14 08:02:25 1175

原创 S-DAPT-2026:一个用于高级持续性威胁检测的阶段感知型合成数据集

大家读完觉得有帮助记得关注和点赞!!!摘要高级持续性威胁(APTs)的检测仍然是一个关键挑战,这源于其隐秘、多阶段的性质以及用于系统性评估的、现实的、带标签的数据集的有限可用性。合成数据集生成已成为对APT攻击活动建模的实用方法;然而,现有方法通常依赖于计算成本高昂的警报关联机制,限制了可扩展性。受这些局限性的启发,本文提出了一个近乎现实的高级持续性威胁合成数据集和一个高效的警报关联框架。所提出的方法引入了一个基于机器学习的关联模块,该模块采用具有余弦相似性度量的K近邻聚类,在时间上下文中对语义相关的警报进

2026-01-14 08:02:10 741

原创 MITRE ATT&CK框架:行为驱动的下一代网络安全防御白皮书

MITRE ATT&CK框架已成为网络安全防御的"通用语言"和"操作系统"。本白皮书系统阐述了该框架的核心原理与行为驱动模型,剖析其多维架构设计,并通过实战案例展示应用流程。文章指出,ATT&CK框架实现了从"以漏洞为中心"到"以行为为中心"的防御范式转变,其三层结构化行为抽象(战术、技术/子技术、程序)构建了三维威胁分析空间。随着2025年AI技术的深度渗透,框架正进入智能化新阶段,未来将向云原生、AI系统等新

2026-01-14 08:01:59 588

原创 针对物联网设备安全嵌入式系统的轻量级密码算法开发与评估

为解决此问题,本文提出了一种智能家居架构,该架构将分布式智能传感器与用于数据过滤和处理的中枢集线器相结合,支持安全分析,同时实现入侵检测[9]、网络钓鱼检测和行为级作弊检测[10],作为更广泛的物联网安全态势以及针对物联网环境的硬件高效轻量级密码学对策的一部分。基于区块链、联邦学习和人工智能范式的混合安全架构的需求,用于保护IoMT驱动的医疗保健[24],正在催生分布式信任管理、隐私保护模型学习和资源受限且延迟要求严格的场景中的智能威胁检测。轻量级密码算法对于保护内存、处理能力和能源受限的设备是必需的。

2026-01-13 08:57:06 575

原创 CurricuLLM:使用微调大语言模型设计个性化且与劳动力需求对齐的网络安全

网络安全格局在数字化进程加速和新型网络安全威胁的推动下不断发展。网络安全项目常常未能使毕业生具备劳动力市场所需的技能,尤其是在网络安全最新发展方面,因为课程设计成本高昂且劳动密集。为了解决这种错配问题,我们提出了一种基于大语言模型(LLM)的新型框架,用于自动化设计和分析网络安全课程,称为CurricuLLM。我们的方法提供了三个关键贡献:(1) 自动化个性化课程设计;(2) 与行业需求对齐的数据驱动流程;(3) 在课程开发中利用微调LLM的综合方法。

2026-01-13 08:56:57 607

原创 针对关键物联网基础设施中实时威胁情报共享的拜占庭鲁棒联邦学习框架与后量子安全聚合

本文提出了一种集成后量子安全聚合的拜占庭鲁棒联邦学习框架,用于关键物联网基础设施的协作式威胁检测。该框架通过自适应信誉机制动态识别恶意参与者,结合CRYSTALS-Kyber密钥封装和同态加密实现后量子安全聚合,并集成差分隐私保护。实验表明,在NSL-KDD和CICIDS2017数据集上达到96.8%和97.6%的威胁检测准确率,能抵御40%拜占庭攻击者,计算开销仅比标准方法增加18%。该框架在保持亚秒级聚合延迟的同时提供256位后量子安全级别,为关键基础设施中的实时威胁情报共享提供了可行的解决方案。

2026-01-13 08:56:45 812

原创 OmniNeuro:一个通过生成式人工智能和可听化实现可解释脑机接口反馈的多模态人机交互框架

本文提出OmniNeuro框架,通过多模态反馈解决脑机接口临床应用中的"黑箱"问题。该系统集成物理、混沌和量子启发三个可解释引擎,将神经信号转化为可听化音频和AI生成报告。在PhysioNet数据集(N=109)测试中平均准确度达58.52%,定性研究(N=3)显示用户更偏好解释性反馈而非二元输出。OmniNeuro创新性地将脑机接口从单纯解码转向人机交互,强调反馈透明度和用户体验,为神经康复提供了新范式。该框架与解码器正交,可作为通用解释层部署于各类架构之上。

2026-01-12 09:10:23 1153

原创 一种用于可泛化行人过街行为推断的视觉与知识增强大语言模型

本文提出了一种视觉与知识增强的大语言模型框架PedX-LLM,用于行人过街行为推断。该框架整合卫星图像视觉特征、文本数据和交通领域知识,通过微调LLaMA-2-7B模型实现了82.0%的平衡准确率,比传统方法提升3.0-7.9个百分点。实验表明,视觉模块贡献2.9%性能提升,领域知识带来额外4.1%改进。在跨地点验证中,零样本配置达到66.9%准确率,少样本学习进一步提升至72.2%,展现出强大的泛化能力。该研究通过多模态数据融合和领域知识整合,将行人行为推断从特定地点模式识别转变为可泛化的情境感知推理,为

2026-01-12 09:10:12 894

原创 HAL – 一个用于门级网表分析的开源框架

HAL是一个开源的硬件逆向工程框架,专注于门级网表分析。它提供GUI界面、插件系统和Python/C++ API,支持密码分析、模块识别和仿真等功能。自2019年发布以来,HAL已被用于23篇学术论文,在GitHub获680星标,并应用于大学课程和专业培训。该工具降低了硬件逆向工程门槛,提高了研究可复现性,帮助理解硬件安全威胁。核心功能包括网表加载、数据流分析和比特序推断等,其模块化设计支持持续扩展。HAL填补了硬件安全分析工具空白,促进了该领域的发展。

2026-01-12 09:09:57 1078

原创 感知网络时代的安全:集成感知与通信安全的综合分类框架

大家读完觉得有帮助记得关注和点赞!!!摘要集成感知与通信(ISAC)代表了6G领域的一个重大转变,无线网络既能感知环境又能进行通信。虽然先前的全面综述已经确立了ISAC安全的基础要素,讨论了以感知为中心的安全模型,并提出了分层防御策略,但本文将这些研究综合成一个涵盖整个ISAC安全领域的综合分类框架。本文从多个正交维度对ISAC安全进行了系统而彻底的回顾。这些维度包括:威胁分类学和传播方法;设计、物理、计算和架构层面的漏洞分析;按部署层分类的防御机制;具有理论界限的安全-性能权衡;关键基础设施的特定行业安全

2026-01-09 09:34:37 934

原创 使用FABRIC进行安全加固:为Linux服务器实现统一合规性聚合器

本文提出一个统一合规性聚合器(UCA)框架,用于在FABRIC测试平台上评估Linux安全加固效果。通过在基线、部分和完全加固的Ubuntu节点上运行108次审计测试,聚合Lynis、OpenSCAP和AIDE的异构输出,结果显示完全加固使OpenSCAP合规性从39.7%提升至71.8%,自定义规则合规性从39.3%提高到83.6%。UCA通过归一化评分和加权聚合,实现了比单工具更全面的安全评估,为可编程测试环境中的系统性加固验证提供了有效方法。

2026-01-09 09:34:13 1017

原创 用于分布式发电系统中协同隐密攻击检测的量子机器学习方法

本文研究了量子机器学习在检测微电网分布式发电单元协同隐密攻击中的应用。通过构建包含无功功率、频率偏差和电压幅值的三维特征数据集,比较了经典SVM、变分量子分类器和混合量子-经典模型的性能。结果显示,经典SVM在低维特征上表现良好(准确率0.839),而完全量子模型受限于NISQ硬件的优化困难(准确率仅0.606)。混合量子-经典SVM结合量子特征嵌入与经典学习,取得了最佳性能(准确率0.856),表明量子特征映射可增强入侵检测能力,尽管当前完全量子学习尚不实用。研究为量子机器学习在电力系统网络安全中的应用提

2026-01-09 09:33:51 586

2402.05917v2.pdf

2402.05917v2

2025-07-21

2312.01381v1.pdf

2312.01381v1

2025-07-21

2311.16926v5.pdf

2311.16926v5

2025-07-21

2312.03502v2.pdf

2312.03502v2

2025-07-21

2311.15537v2.pdf

2311.15537v2

2025-07-21

2401.03707v2.pdf

2401.03707v2

2025-07-21

2403.15019v1.pdf

2403.15019v1

2025-07-21

2401.16741v2.pdf

2401.16741v2

2025-07-21

2401.13627v2.pdf

2401.13627v2

2025-07-21

2401.00027v2.pdf

2401.00027v2

2025-07-21

2401.15261v2.pdf

2401.15261v2

2025-07-21

【5G网络与边缘计算】基于SRv6的多接入边缘应用访问方案:优化数据路径与资源管理

内容概要:本文探讨了在5G网络中使用Segment Routing over IPv6(SRv6)访问边缘计算应用的方法。随着多接入边缘计算(MEC)在5G及未来网络中的兴起,优化数据路径并确保资源按政策使用变得至关重要。文章首先回顾了现有的边缘资源访问解决方案及其局限性,随后提出将SRv6集成到5G架构中以解决这些问题。SRv6不仅与现有5G控制平面兼容,还允许运营商对绑定和服务访问进行控制,支持用户移动性和运行时更新,并具备良好的可扩展性。此外,文中还介绍了基于UERANSIM和free5GC的测试平台,展示了UE如何根据连接的5G切片访问不同的应用实例。 适合人群:从事5G网络、边缘计算及相关领域的研究人员和技术人员,尤其是对网络架构和协议设计感兴趣的读者。 使用场景及目标:①理解当前边缘计算应用访问方案的局限性;②掌握SRv6在5G网络中的应用方式及其优势;③探索如何利用SRv6实现高效、灵活的边缘应用访问机制。 其他说明:本文提出的SRv6解决方案旨在满足五个关键需求:与5G控制平面兼容、运营商可控、支持用户移动性、支持运行时更新以及具有良好的可扩展性。实验部分通过构建测试平台验证了该方案的可行性,未来工作将聚焦于动态配置SR网关和支持5G切换流程。

2025-07-20

EFormer:增强型Transformer用于前景语义与轮廓特征的人像抠图研究及其实现

卷积神经网络(CNN)难以捕捉远距离依赖性和复杂的全局信息,Vision Transformer虽然在低频成分提取上表现出色,但对于高频信息的处理存在明显不足。为解决此问题,论文创新地使用了跨分辨率交叉注意力模块,并建立了语义轮廓检测器(SCD),以及分别设计了边缘提取分支(CEEB)和语义抽取分支(SEB),确保同时优化两个层面的内容表示能力。实验结果显示EFormer显著提升了对复杂背景条件下的人脸边界及细节点位的精确度,相比以往模型实现了性能超越。此外,EFormer不需要预设参数即可达到良好的适应性和稳定性。 适合人群:计算机视觉、机器学习领域的研究人员,特别是从事图像分割、深度估计等相关工作的专业人士。 使用场景及目标:① 适用于需要高精度分离主体对象与背景区别的应用场景,如影视特效制作、社交媒体平台的内容编辑工具、智能相册应用等领域;② 提升模型对高频细节(比如头发丝边缘)的捕捉精度和鲁棒性;③ 推动未来研究方向的发展,在此基础上可以进一步探索更多种类的任务处理方式。

2025-02-13

视频实例分割的创新方法-无监督VideoCutLER算法的研究与应用

内容概要:本文介绍了名为VideoCutLER的创新无监督多实例视频分割算法。研究指出,现有的无监督视频实例分割通常依靠光学流估计进行运动估计,在面对遮挡、光照变化等情况时性能不佳。为解决这一问题,作者提出了一种简单的基于剪辑合成与训练(cut-synthesis-and-leearn)的管道模型。这个流程包括三个关键步骤:首先,利用MaskCut从未标注图像中生成多个对象伪掩膜;其次,使用ImageCut2Video将一批未标记图片转换成带有关联轨迹的合成视频;最后用伪轨迹对一个无监督的视频分割模型进行训练。该模型仅依赖无标签图片即可学习并执行视频实例分割任务,实现了比现有最优解更好的效果。实验结果显示了其卓越的表现以及强大的泛化能力。 适合人群:从事计算机视觉及相关领域的研究人员和技术从业者,特别是在深度学习应用于视频分析方面有一定经验的基础研究人员或高级技术人员。

2025-02-13

室内环境无监督3D实例分割方法UnScene3D的技术实现与应用

内容概要:本文介绍了名为UnScene3D的新方法,用于解决无需人工标注即可对复杂室内的3D点云数据进行对象实例分割的问题。作者提出了基于伪掩膜生成与自训练迭代的方法,有效利用自我监督颜色和几何特征生成稀疏的初始伪实例掩膜,并通过模型自训练逐步提高精度和密实度,最终实现在无手动注释下高效而准确地识别3D物体并给出完整的实例分割。实验表明,该算法相比已有的无监督和弱监督3D分割方法有着更高的精确率。 适用人群:计算机视觉领域研究者和从业者、自动驾驶以及机器人导航研究人员。 使用场景及目标:主要针对RGB-D相机采集的真实世界三维点云计算设备,适用于需要从复杂且凌乱的场景中提取特定个体的任务,如机器人视觉系统构建。该工具的目标是从未标记的数据集中识别独立的对象实例并且为其绘制边界框。 其他说明:UnScene3D采用了一种新颖的基于几何先验和多模态特征的伪遮罩生成技术和一种有效的自监督框架来进行密集预测。

2025-01-22

视频对象分割领域的引导槽注意力机制及其应用

内容概要:论文提出了一种新型的引导槽注意力(Guided Slot Attention, GSA)网络用于无监督视频对象分割任务,旨在复杂背景下更好地分离前景与背景并提高特征提取能力。具体而言,模型引入了引导槽、特征聚合转换器(Feature Aggregation Transformer,FAT)以及K近邻过滤算法,利用局部和全局特征进行迭代调整,最终生成更精准的分割掩模。此外,在DAVIS-16和FBMS两个知名数据集上进行了大量实验,证明了提出的GSA网络优于现有方法并在多物体视频中表现稳健。 适合人群:计算机视觉、机器学习的研究人员和技术爱好者,对视频对象分割感兴趣的开发者。 使用场景及目标:适用于各种需要高质量无监督视频对象分割的应用场合,如自动驾驶系统中的障碍物检测、医疗影像分析等领域;主要目的是改进复杂场景下前景背景的有效区分,增强识别精度。 其他说明:研究团队来自延世大学,相关代码已经开源发布于GitHub平台上。该研究得到韩国政府信息技术规划评估研究所(IITP)的资金支持,并被收录进多个顶级国际会议和期刊中。

2025-01-22

无监督视频对象分割领域的跨模态与帧间注意力机制研究及其应用

内容概要:本文提出了一种新的无监督视频对象分割(unsupervised VOS)方法——双原型注意力机制(Dual Prototype Attention),即IMA(跨模态注意模块)和IFA(帧间注意模块)。这些机制分别解决了现有多模态融合和时间聚集方法中存在的鲁棒性和计算效率等问题,显著提高了在多个公开基准数据集上的表现。此外,论文还探讨了原型嵌入对性能的影响并对其进行了验证。 适合人群:对视频处理特别是无监督视频对象分割领域感兴趣的计算机视觉研究员和技术开发者。 使用场景及目标:适用于各种需要进行高质量自动图像或视频内容分析的应用环境,如智能监控、增强现实、自动驾驶等领域。具体的目标是提高模型识别最突出物体时的精度以及稳定性,即使遇到遮挡或者复杂背景也能有效运作。 阅读建议:本篇文献提供了详尽的技术细节和支持性实验结果来展示所提出的DPA方法优越之处。因此,在理解和评估该研究成果的基础上可以深入了解如何利用注意力机制提升深度学习模型的效果,尤其是对于涉及时间和空间维度的数据处理任务非常有价值。

2025-01-22

深度混合专家语言模型DeepSeek-V3的技术报告:高效推理与经济训练实现

内容概要:本文介绍了大型混合专家(MoE)语言模型DeepSeek-V3的技术报告。DeepSeek-V3拥有总计671亿参数,在每个令牌激活约37亿参数,采用Multi-head Latent Attention (MLA)架构和DeepSeekMoE架构确保高效的推理和成本效益的训练。为优化推理和成本有效训练,DeepSeek-V3还引入了无辅助损失策略用于负载均衡以及多令牌预测训练目标,旨在增强性能。同时文中讨论了预训练、后训练阶段,及其硬件部署策略,并展示了全面评估表明DeepSeek-V3相较于其他开源模型表现更为优秀且与顶级闭源模型媲美。 适用人群:具备一定深度学习和自然语言处理基础知识的研发人员和技术爱好者。 使用场景及目标:①探讨最新的深度学习优化技术和大规模语言模型的设计;②理解高效率的语言模型训练框架及其经济性;③学习先进模型在不同任务基准测试上的实际应用表现。 其他说明:该研究致力于推动开源模型在性能和实用性方面的边界拓展,并为研究人员提供了新的研究方向和发展路径。尽管其性能出色,但其部署规模较大可能对小型团队带来负担。未来的改进将依赖于更先进的硬件发展来进一步提升速度并降低成本。此外,文章强调该系列持续关注开放源码长远发展模式,逐步接近人工通用智能(AGI)这一最终目标。

2025-01-18

基于等变变换改善图像重建的插件与即用(Plug-and-Play)算法稳定性研究

内容概要:本文主要探讨了将等变属性引入插件与即用(Plug-and-Play,PnP)算法,特别是应用于图像重建中的效果提升方法。具体来说,在解决逆向成像问题时,通过随机应用变换及其逆操作于图像降噪器输入输出的方式对降噪器施加约束。该方法不仅可以减少由隐含先验模型所导致的算法不稳定性及次优解情况,而且能显著提高重建质量与稳定性。同时,文章从理论角度分析并解释了这一现象产生的原因,指出通过这种机制能够更好地保持隐含图像先验的一致性和鲁棒性,并进行了大量实验来验证这一点的有效性。 适用人群:从事机器视觉和深度学习方向的研究人员以及开发者们。这些人通常需要构建高质量和高效的算法用于解决如医学成像、遥感影像处理等各种实际场景。 使用场景及目标:①改进现有插件与即用框架的稳定性和效率,确保各种情况下都能获得良好性能;②增强基于不同模态(例如CT扫描、MRI等)数据的应用系统的泛化能力;③推动相关领域的学术研究和技术进步,促进更多创新成果出现。 其他说明:尽管该研究所提出的方法在很大程度上优化了算法的表现,但在某些特定配置下依然可能出现分歧或幻影伪迹。因此,在实践中仍需谨慎评估选择是否采用这种方法论并进行充分测试验证。此外,本项目得到了多项资助支持,并利用IDRIS提供的高性能计算资源完成部分计算任务。

2025-01-18

残差去噪扩散模型(RDDM):图像生成与修复任务中的双扩散框架及其应用

内容概要:本文提出了一种名为残差去噪扩散模型(RDDM)的新方法。这一框架将传统的单向去噪扩散过程解耦为残差扩散和噪声扩散两个部分,从而扩展了原始的基于去噪的扩散模型到统一并具解释性的模型上,能够同时应用于图像生成与修复任务。通过在实验中引入残差表示目标图到退化输入之间的有方向转换,明确指导逆向生成用于图像恢复,而噪声则侧重随机扰动增加变化度。文中探讨了多种采样方式,并证明其一致性以及优于现有去噪模型的表现能力。 适合人群:从事图像处理的研究员和技术人员,对深度学习中的生成对抗网络、自编码器、变分推理等领域有一定背景的知识工作者。 使用场景及目标:适用于需要高质量图像生成或修复的应用场合,如去除阴影、低光照增强、消雨、图像插值等。RDDM提供了解决这些任务的有效工具,能够在保持高视觉效果的同时减少计算复杂性和提高训练效率。 其他说明:作者提供了开源代码和预训练好的模型来促进进一步探索与发展该创新性框架(网址见论文)。此外,研究发现不同的采样步骤会影响最终生成的质量,并提出了一些优化系数安排的方法。对于未见过的任务,则建议通过自动选择最佳抽样机制来达到理想的效果。

2025-01-18

Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper.pdf

Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper

2025-07-21

Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper.pdf

Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper

2025-07-21

2403.19225v1.pdf

2403.19225v1

2025-07-21

Hu_Training_Vision_Transformers_for_Semi-Supervised_Semantic_Segmentation_CVPR_2024_paper.pdf

Hu_Training_Vision_Transformers_for_Semi-Supervised_Semantic_Segmentation_CVPR_2024_paper

2025-07-21

Yu_Shadow-Enlightened_Image_Outpainting_CVPR_2024_paper.pdf

Yu_Shadow-Enlightened_Image_Outpainting_CVPR_2024_paper

2025-07-21

Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper.pdf

Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper

2025-07-21

2403.01482v4.pdf

2403.01482v4

2025-07-21

2404.06542v1.pdf

2404.06542v1

2025-07-21

2403.10362v2.pdf

2403.10362v2

2025-07-21

2403.07700v1.pdf

2403.07700v1

2025-07-21

2403.07630v1.pdf

2403.07630v1

2025-07-21

2404.04231v1.pdf

2404.04231v1

2025-07-21

2403.01818v1.pdf

2403.01818v1

2025-07-21

2404.04050v1.pdf

2404.04050v1

2025-07-21

2403.18342v1.pdf

2403.18342v1

2025-07-21

2404.01518v1.pdf

2404.01518v1

2025-07-21

2403.18186v1.pdf

2403.18186v1

2025-07-21

2403.16370v1.pdf

2403.16370v1

2025-07-21

2404.00130v1.pdf

2404.00130v1

2025-07-21

2404.00252v2.pdf

2404.00252v2

2025-07-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除