自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1120)
  • 资源 (3)
  • 收藏
  • 关注

原创 ISADM:一种用于对抗现实世界攻击者的集成化STRIDE、ATT&CK和D3FEND威胁建模模型

大家读完觉得有帮助记得关注和点赞!!!摘要金融科技的日益互联、快速创新以及对全球数字基础设施的依赖,带来了重大的网络安全挑战。传统的网络安全框架通常难以识别和优先处理特定行业或特定领域的漏洞,或适应不断演变的对手策略,尤其是在金融科技等高针对性行业。为弥补这些不足,我们提出了ISADM(集成化STRIDE-ATT&CK-D3FEND威胁模型),这是一种应用于金融科技安全的新型混合方法论,它将STRIDE以资产为中心的威胁分类、MITRE ATT&CK的现实世界对手行为目录以及D3FEND的结构化对抗措施知识

2026-01-01 07:08:07 527

原创 量子计算机网络安全研究方向

本文概述了量子计算机网络安全领域近年来的主要研究方向和趋势。随着量子计算从NISQ时代向FTQC时代过渡,相关安全问题日益凸显。研究重点包括:利用量子门串扰、重置门和读取串扰等NISQ特性发起的攻击,以及针对FTQC错误纠正机制和解码器的新兴威胁。文章指出当前研究多集中于攻击演示,防御措施研究相对滞后,并列举了软件供应链安全、硬件验证、量子系统网络保护等亟待填补的研究空白。作者强调应在量子计算机商品化前整合安全机制,呼吁学界和产业界共同提升量子计算安全优先级。

2026-01-01 07:07:54 433

原创 ReGAIN:用于网络流量分析的检索增强人工智能框架

摘要:本文提出ReGAIN框架,结合自然语言摘要、检索增强生成和大语言模型推理,实现透明准确的网络流量分析。该框架通过多阶段检索流程生成带证据引用的响应,在ICMP Ping泛洪和TCP SYN泛洪攻击检测中达到95.95%-98.82%的准确率,优于传统方法。评估显示ReGAIN兼具高性能和可解释性,为网络流量分析提供了创新解决方案。

2026-01-01 07:07:43 756

原创 用于人工智能系统威胁缓解与韧性的多智能体框架

摘要:机器学习在金融、医疗等高风险领域的广泛应用使其成为复杂对抗性攻击的主要目标。本研究通过整合MITRE ATLAS、AI事件数据库等来源的93个威胁案例及854个ML代码库,系统分析了现代ML安全风险。研究发现Transformer和CNN是最常被攻击的模型架构,测试、推理和训练阶段最为脆弱。研究揭示了32种新型攻击技术,包括模型窃取、偏好引导优化等,并发现TensorFlow等主流框架存在显著安全漏洞。通过构建异构图神经网络,研究提出了自适应防御框架,强调需在ML生命周期各阶段实施针对性防护措施。研究

2025-12-31 10:58:20 674

原创 用于网络杀伤链推断的策略-价值引导的MDP-MCTS框架

本文提出了一种从非结构化网络威胁情报(CTI)中自动重构ATT&CK杀伤链的推理框架。该框架整合了Transformer语义编码、符号化马尔可夫决策过程(MDP)和多目标奖励函数,通过策略-价值网络引导的蒙特卡洛树搜索(MCTS)来推断七阶段攻击路径。实验表明,相比纯Transformer模型,该方法在FIN6、APT24和UNC1549三个真实入侵案例中生成的杀伤链具有更高的语义保真度和操作连贯性,更接近专家判断。该研究为自动化、可解释的网络威胁分析提供了新思路。

2025-12-31 07:15:28 627

原创 MambaRefine-YOLO:一种用于无人机影像的双模态小目标检测器

本文提出MambaRefine-YOLO模型,用于解决无人机影像中小目标检测的难题。该模型创新性地采用双门控互补Mamba融合模块,通过光照感知和差异感知机制自适应融合RGB和红外模态特征;同时设计分层特征聚合颈部,采用"先优化后融合"策略增强多尺度特征。实验表明,在DroneVehicle双模态数据集上达到83.2%mAP,比基线提升7.9%;在VisDrone单模态数据集上也表现优异。该模型在精度和速度间取得良好平衡,适用于无人机实时检测任务。主要创新包括基于Mamba的全局特征融合

2025-12-30 09:19:27 996

原创 对工业控制系统威胁信息共享挑战与未来方向的证据驱动分析

大家读完觉得有帮助记得关注和点赞!!!关键字:ICS 工业控制系统STIX 结构化威胁信息表达AIS 自动化指标共享DOE 能源部CRISP 网络安全风险信息共享计划CyOTE 运营技术环境网络安全KEV 已知可利用漏洞IOC 入侵指标LLM 大语言模型SCO STIX网络可观察对象CTI 网络威胁情报CPS 网络物理系统OT 运营技术IT 信息技术NIS 网络和信息系统PLC 可编程逻辑控制器CERT 网络安全应急响应团队TTP 战术、技术与程序API 应用程序编程接口OS 操作系统C2 命令与控制CRC

2025-12-30 09:17:52 531

原创 MORPHEUS:一个用于建模、度量和缓解网络安全中人因的多维框架

摘要 本文提出MORPHEUS框架,首次将网络安全中的人因系统化为动态互联的体系。基于认知-情感-行为(CAB)模型和归因理论,该框架整合了50种影响钓鱼攻击、恶意软件、密码管理等六大威胁的人因,并揭示了295种相互作用关系,提炼出12种关键机制。通过99种已验证的测量工具,MORPHEUS实现了从理论到实践的转化,为风险诊断、培训设计等8个应用场景提供操作指南。研究采用多方法策略,结合系统性文献综述与AI辅助分析,填补了现有模型零散化的空白,为构建以人为中心的网络防御体系提供了严谨基础。

2025-12-30 09:16:19 852

原创 MCPZoo:一个用于AI代理的大规模可运行模型上下文协议服务器数据集

摘要 MCPZoo是目前最大、最全面的模型上下文协议(MCP)服务器数据集,包含95,142个服务器,其中14,206个已验证可运行且可交互。该数据集通过标准化元数据和统一访问接口,支持对MCP生态系统的系统性研究,包括安全分析和代理能力评估。MCPZoo解决了现有研究因数据不足和部署困难导致的局限性,为社区提供了开放、可扩展的实验资源。访问需遵守非商业用途、法律合规等条件,详情参见项目网站。

2025-12-29 08:59:53 838

原创 APT-ClaritySet:一个具备别名归一化和基于图去重功能的大规模、高保真标签APT恶意软件数据集

摘要:本文提出APT-ClaritySet及其构建方法,用于解决APT研究中的数据集标准化问题。通过归一化威胁行为体别名(整合11.22%不一致名称)和基于图特征的重复样本删除(减少47.55%冗余),构建了三个数据集组件:(1)APT-ClaritySet-Full包含34,363个样本;(2)APT-ClaritySet-Unique含25,923个独特样本;(3)APT-ClaritySet-FuncReuse提供324,538个函数重用簇。评估显示组织标签准确率达96.43%,为APT模式、演变和归

2025-12-29 08:59:43 1063

原创 利用AI的云安全:一种基于融合的AISOC用于恶意软件和日志行为检测

强调弹性、成本和延迟。这与校准后的、可部署的融合方法相一致,后者将异构信号转化为可操作的分流级别,适用于精简的云部署,并解决了一个在小型占用空间、可解释的端到端评估融合方面的开放缺口[akhi2025tcn, shanthi2023comparative, bedi2019analysis, dhirani2024securing]。融合异构表示(例如,表格数据加上类似图像的转换)的集成模型在UNSW-NB15和类似数据上优于单一模型,这支持采用校准后的融合,而非在小型云占用空间中难以操作的重型架构。

2025-12-29 08:59:32 1103

原创 无线网络中多播的联盟博弈框架

本文研究了无线网络中用户合作形成联盟以通过多播接收流行文件的条件。基于合作博弈论框架,主要分析了两种场景:1)当所有用户合作形成大联盟时,使用核心概念识别了核心非空(大联盟稳定)和核心为空的条件;2)当用户划分为多个联盟时,利用𝔻c-稳定性概念确定了稳定划分的充分条件。结果表明,当用户数据速率差异较小时,大联盟更稳定;而速率差异较大时,用户倾向于形成独立联盟。数值分析验证了不同参数(如传输速率、功率、文件大小等)对联盟稳定性的影响。该研究为无线网络中合作多播策略的设计提供了理论基础。

2025-12-27 12:44:00 597

原创 感知通信的去中心化多智能体系统

VDR 充当所有注册 SA 的公共、防篡改目录,提供基础的信任层,这符合区块链去中心化的核心原则,保证智能体的身份不能被任意更改或审查。,sm​})之间的形式化交互机制。我们提出了去中心化多智能体系统(DMAS),这是一种新型架构范式,旨在通过集成去中心化智能体运行时和信任感知通信协议,克服集中式多智能体系统固有的局限性,如单点故障、审查和信任缺失。最近的综述强调,增强了大语言模型的多智能体系统利用多个专业智能体的集体智慧来实现超越单个智能体能力的功能,有效解决了诸如幻觉和单点故障等挑战 [7]。

2025-12-27 12:43:49 927

原创 对智能体AI的渗透测试:跨模型和框架的比较安全分析

摘要:本研究首次对智能体AI系统进行了系统性安全评估,在AutoGen和CrewAI两个框架上测试了Claude3.5、Gemini2.5、GPT-4o、Grok2和NovaPro五个主流模型。通过130个测试案例(13种攻击场景×5模型×2框架)发现:AutoGen拒绝率(52.3%)显著高于CrewAI(30.8%);模型间安全差异明显,NovaPro表现最佳(46.2%拒绝率),而CrewAI上的Grok2仅拒绝15.4%攻击。研究识别出六种防御行为模式,包括新型"幻觉式合规"策略

2025-12-27 12:43:41 956

原创 Grid-STIX:一种符合STIX 2.1标准的电网及核能系统信息物理安全本体论

Grid-STIX:面向现代电网的信息物理安全本体论扩展 本文提出Grid-STIX,一个专为电力系统设计的STIX2.1领域扩展框架。针对现有威胁情报标准在电网特定资产、运营技术关系和信息物理依赖关系方面的不足,Grid-STIX采用模块化架构,包含物理资产、运营组件、信息物理关系和安全策略等11个模块,支持对分布式能源、高级计量基础设施及核能设施的安全建模。该框架通过系统化的攻击模式表征、供应链风险评估和跨领域影响分析提供威胁建模能力,同时保持与STIX2.1标准的兼容性。Grid-STIX包含专用核保

2025-12-26 07:52:40 436

原创 基于区块链与SQL数据库的数字孪生证据管理系统:比较性取证分析

本文比较了区块链/IPFS与传统SQL数据库在数字孪生取证证据管理中的性能差异。实验结果显示:区块链系统在存储操作上平均快35%(16.43秒 vs 25.36秒),而SQL数据库在检索操作上快31%(11.01秒 vs 15.95秒)。可扩展性分析表明,区块链存储性能随文件增大增长较缓,但SQL在检索方面更具线性扩展优势。虽然两种系统均能保持数据完整性(哈希验证100%匹配),但区块链的不可变性为法律程序提供了更强的安全保障。研究表明,系统选择需权衡性能需求与取证完整性要求,建议未来探索混合模型以兼顾两者

2025-12-26 07:52:29 701

原创 MALCDF:一种用于实时网络防御的分布式多智能体LLM框架

本文提出了一种基于多智能体大语言模型(LLM)的实时网络防御框架(MALCDF),通过四个协同工作的LLM智能体(检测、情报、响应、分析)实现自适应威胁防护。实验采用CICIDS2017数据集生成的50条记录流进行测试,结果显示MALCDF达到90.0%的检测准确率和85.7%的F1分数,误报率9.1%,平均延迟6.8秒/事件,性能优于单LLM和传统ML方法。该框架通过安全通信层实现智能体间的加密消息传递和本体对齐,提升了威胁检测的准确性和输出一致性,为实时网络防御提供了新的解决方案。

2025-12-26 07:52:17 802

原创 AutoMalDesc:用于网络威胁研究的大规模脚本分析

本文提出了AutoMalDesc框架,通过自步学习方法实现自动化恶意软件静态分析摘要生成。该方法仅需少量专家标注样本进行初始训练,随后通过合成数据生成和验证循环实现自我改进。在5种脚本语言的3600个样本测试中,系统展现出显著的迭代改进,在摘要质量和分类准确率上均有提升。评估结合量化指标与专家/LMM评判,证实了生成摘要的技术精确性和语言连贯性。研究发布了包含10万样本的数据集以促进相关研究,其中包含900个种子样本和3600个测试样本。该方法有效降低了专家标注需求,为恶意软件分析提供了可扩展的自动化解决方

2025-12-25 07:21:17 791

原创 MultiShotMaster:一个可控的多镜头视频生成框架

本文提出了MultiShotMaster,首个可控的多镜头视频生成框架。针对当前技术在多镜头叙事视频生成中的局限性,该方法通过改进旋转位置嵌入(RoPE)机制,实现了灵活的镜头编排和时空锚定的参考注入。具体贡献包括:1) 多镜头叙事RoPE,通过相位偏移标记镜头边界;2) 时空位置感知RoPE,支持精确的参考图像注入;3) 自动化数据构建流程,提取多镜头视频及相关标注信息。实验表明,该方法在文本对齐、镜头一致性、转场准确性和叙事连贯性等方面优于现有技术,支持文本驱动的主体一致性、运动控制和场景定制。局限包括

2025-12-25 07:21:02 662

原创 LegionITS:一种联邦式入侵容忍系统架构

摘要: 针对日益复杂的网络攻击,现有安全方案(如SIEM、SOAR等)难以应对新型威胁。为此,本文提出LegionITS——一种基于联邦化入侵容忍系统(ITS)的创新架构,通过整合恶意软件信息共享平台(MISP)和差分隐私(DP)技术,实现跨组织安全协作与隐私保护。该架构支持两级联邦模型,确保内部及组织间威胁情报的安全共享,同时利用多方同态加密(MHE)和零知识证明(ZKP)保障数据机密性。实验表明,结合DP的联邦学习(FL)虽使检测准确率下降12.44%,但仍保持85.98%的可靠性能。LegionITS

2025-12-25 07:20:49 902

原创 检测大型视觉语言模型中的未知越狱攻击准确的方法

摘要: 大型视觉语言模型(LVLM)面临严重的越狱攻击风险,现有检测方法因依赖启发式规则而性能受限。本文提出**学习检测(LoD)**框架,通过无监督异常检测解决这一问题。LoD包含两个核心组件:**多模态安全概念激活向量(MSCAV)**提取层级安全特征,安全模式自动编码器建模安全输入分布并基于重建误差识别异常。实验表明,LoD在三种LVLM和五种攻击基准上平均AUROC达0.9951,较最强基线提升18.21%,最小AUROC提升38.89%,且推理速度显著优于现有方法。消融研究验证了MSCAV和自动编

2025-12-24 14:02:14 1199

原创 面向6G的可信生成式人工智能:集成应用与安全框架

摘要:本文探讨了生成式人工智能(GenAI)与6G网络深度融合带来的安全挑战。研究揭示了集成传感与通信(ISAC)、联邦学习(FL)、数字孪生(DT)、扩散模型(DM)和大型电信模型(LTM)等关键技术存在的跨领域安全漏洞,提出了可能操纵物理层和认知层的对抗代理概念。为应对这些风险,作者提出自适应进化防御(AED)框架,通过GenAI驱动的仿真与攻击持续协同进化,结合物理层保护和安全学习管道。案例研究表明基于LLM的通信模块易受对抗攻击,验证了所提防御机制的有效性。文章最后总结了构建可信、抗量子且自适应的G

2025-12-24 14:02:00 667

原创 UIXpose:通过意图-行为差异分析进行移动恶意软件检测

本文介绍了UIXpose框架,这是一种与源代码无关的动态分析系统,通过意图-行为对齐(IBA)技术检测移动恶意软件。该框架创新性地将UI推断的意图与运行时行为(包括网络负载、内存使用和资源消耗)进行实时比对,克服了传统静态分析或单纯元数据检测的局限性。UIXpose采用视觉语言模型解析屏幕内容生成意图向量,同时整合多通道运行时数据形成行为向量,通过计算二者对齐度来识别异常活动。实验表明,在Wikipedia、SmartCurrencyConverter等案例中,UIXpose能有效区分合法高负载操作与隐蔽恶

2025-12-24 14:01:47 706

原创 将生成式人工智能融入网络安全教育:一项关于OCR和多模态LLM辅助教学的研究

本研究提出了一种轻量级LLM辅助教学系统,通过OCR技术将生成式AI集成到传统网络安全实验平台(CLaaS)中。系统采用零样本方法,使用TesseractOCR从教学幻灯片提取文本,再由LLM生成简化指令。在大学课程评估中,42名学生反馈平均得分为7.83(1-10分制),表明其教学有效性。与多模态LLM的对比显示,基于OCR的方法在以文本为主的幻灯片上表现相当,但计算成本显著降低。该研究为传统教育平台引入AI辅助教学提供了一种经济高效的解决方案,特别适合STEM领域的体验式学习。未来工作将探索个性化教学和

2025-12-23 07:36:01 919

原创 BEACON:利用大语言模型嵌入和深度学习进行行为恶意软件分类

摘要: 本研究提出BEACON框架,利用大语言模型(LLM)从恶意软件行为报告中生成上下文感知的嵌入,结合1DCNN实现高效分类。实验基于Avast-CTU数据集,BEACON在10个恶意软件家族分类中准确率达98.5%,显著优于传统方法(如SVM、MLP)。LLM嵌入有效捕获API调用、文件访问等行为模式,无需手动特征工程,且对类别不平衡鲁棒。与现有研究对比,BEACON在8个家族上F1分数最高,验证了其结合语义嵌入与深度学习的优势,为实时检测提供新思路。未来将探索定制化嵌入模型及可解释性增强。

2025-12-23 07:35:44 869

原创 迈向太空基础设施攻击的系统性分类法

大家读完觉得有帮助记得关注和点赞!!!摘要太空基础设施是一个对全球经济和社会至关重要的新兴领域。然而,该领域容易受到攻击。为了增强该领域的韧性,我们必须了解可能对其发起的攻击。现状是,尽管对太空网络安全的系统性分析和未来研究具有指导重要性,但目前尚无针对太空基础设施攻击的系统性理解。在本文中,我们通过提出首个针对太空基础设施攻击的系统性分类法来填补这一空白。我们希望本文能激励学术界共同努力,完善该分类法,使其成为一个广泛使用的分类标准。I 引言太空基础设施所支持的服务已融入我们的日常生活,并成为全球经济和社

2025-12-23 07:35:25 911

原创 RAMEN:适用于地球观测的分辨率可调多模态编码器​

RAMEN:一种分辨率可调的多模态地球观测编码器 摘要:本文提出RAMEN,一种新型分辨率可调的多模态编码器,用于处理地球观测(EO)数据的异构性。该模型通过三个创新模块解决了EO数据在模态、空间和时间分辨率上的多样性问题:(1)通道条件投影器嵌入物理意义;(2)可调空间重采样器实现分辨率控制;(3)时间注意力模块处理时序依赖。RAMEN采用掩码图像建模进行自监督预训练,在统一潜在空间中学习跨模态表示。实验表明,RAMEN在PANGAEA基准测试的8个任务上达到最先进性能,平均mIoU 60.03,同时支持

2025-12-22 07:38:20 875

原创 SDG-Track:一种用于嵌入式平台上高分辨率无人机跟踪的异构观察者-跟随者框架

本文提出SDG-Track框架,解决边缘设备上小型无人机跟踪面临的分辨率-速度冲突问题。该系统采用观察者-跟随者架构:GPU上低频率运行高分辨率检测器(1920×1080)提供精确位置锚点;CPU上通过ROI约束的稀疏光流进行高频轨迹插值。为解决跟踪失败问题,提出双空间恢复机制,融合颜色直方图匹配和几何一致性约束。实验表明,在NVIDIA Jetson Orin Nano上实现35.1FPS吞吐量,同时保持97.2%的检测精度,成功跟踪敏捷FPV无人机。该系统有效平衡了边缘设备上的计算资源分配,为实时无人机

2025-12-22 07:38:11 941

原创 NormalView:使用几何投影实现不依赖于传感器的树种分类,适用于背包和机载激光雷达数据

本文提出了一种基于法向量投影的深度学习模型NormalView,用于激光扫描点云的树种分类。该方法将局部几何信息通过法向量估计嵌入二维投影,作为YOLOv11网络的输入。实验表明,在高密度移动激光扫描数据(7个树种)上,NormalView分类准确率达95.5%,优于基于强度信息的模型;在机载激光扫描数据(9个树种)上,使用多光谱强度信息的模型表现最佳(准确率92.5%)。研究证实,当基于投影的方法结合几何信息与先进图像分类网络时,可获得优异结果,且不依赖特定传感器。本文公开了包含7个树种的高质量MLS数据

2025-12-22 07:38:03 1022

原创 一种用于通过深度学习进行威胁行为分析的自适应多层蜜网架构

本文提出了一种基于强化学习的自适应蜜网架构ADLAH,旨在应对日益复杂的网络威胁。该系统通过深度学习实时分析网络流量,智能决策何时将低交互传感器会话升级为高交互蜜罐,从而在最小化资源消耗的同时最大化威胁情报收集。架构包含四个核心模块:传感器节点、中心蜂巢、动态容器编排和AI分析管道,实现了从首次探测到攻击链分析的完整闭环。研究创新性地将强化学习应用于基础设施级编排,突破了传统静态蜜罐的局限性。尽管原型验证了技术可行性,但大规模实证评估仍需未来工作。该研究为构建智能、自适应的网络安全防御系统提供了重要参考。

2025-12-19 09:04:27 589

原创 一种用于零日攻击检测的监督机器学习模型综合研究:在非平衡数据上的性能分析

摘要:本研究针对零日攻击检测的挑战性任务,提出了一种基于监督学习模型的检测框架。通过评估随机森林、XGBoost等五种分类模型在UNSW-NB15不平衡数据集上的性能,特别考察了过采样技术对模型指标的影响。实验结果表明,随机森林在过采样条件下表现最优(召回率94.3%),但XGBoost因兼顾高准确率(召回率81.4%)和快速执行(<10秒)成为最佳选择。研究创新性地将零日攻击仅置于测试集,并引入运行时间作为评估指标,为实时入侵检测系统提供了实用解决方案。该框架通过网格搜索、PCA降维和SMOTE过采

2025-12-19 09:04:10 884

原创 PrivLLMSwarm: 一种用于安全物联网监控的、基于大语言模型的隐私保护无人机群

本文提出PrivLLMSwarm框架,实现了无人机群在物联网环境中的隐私保护大语言模型推理。该框架通过安全多方计算(MPC)保护敏感数据,采用优化的Transformer组件(包括GELU和SoftMax近似)降低计算开销,并结合强化学习微调的GPT-2模型生成可靠指令。实验表明,在AirSim模拟的城市环境中,该系统在保持端到端机密性的同时,实现了0.9的语义相似度、1.2米轨迹精度和92%避障成功率。与差分隐私等方法相比,PrivLLMSwarm在隐私性、准确性和效率之间取得了更好平衡,为智慧城市监控等

2025-12-19 09:04:01 1021

原创 通过大规模蜜网刻画大规模对抗性活动特征

本文利用HoneyTrap蜜罐框架对网络攻击行为进行了24天的纵向分析,收集了6030万起事件。研究采用JSON转Parquet格式的数据处理管道,实现5.8-9.3倍压缩和7.2倍查询速度提升。主要发现:1)HTTP/HTTPS服务占主导(800万次尝试);2)SSH端口遭受460万次暴力破解;3)Minecraft等服务也频繁被攻击(日均11.8万次)。分析揭示了攻击者采用IP轮换、端口跳跃等策略,结合僵尸网络协调攻击。研究为关键基础设施和物联网安全防护提供了重要参考。

2025-12-18 09:18:00 788

原创 AgenticCyber:一种用于网络安全中多模态威胁检测和自适应响应的、基于生成式人工智能的多智能体系统

摘要:本文提出AgenticCyber,一种基于生成式AI的多智能体系统,用于实时多模态网络安全威胁检测。该系统整合云日志、监控视频和环境音频数据,通过专门智能体协作和Google Gemini多模态模型实现跨模态推理。实验表明,该系统在AWS CloudTrail、UCF-Crime等数据集上达到96.2%的F1分数,响应延迟降至420毫秒,比传统系统提升65%。其模块化架构结合LangChain智能体编排,为分布式环境提供了可扩展的主动防御方案,有效克服了孤立安全技术的局限性。

2025-12-18 09:17:11 785

原创 空间人工智能的去中心化信任:基于区块链的多供应商低地球轨道卫星网络联邦学习

摘要:OrbitChain是一个基于区块链的框架,用于实现低地球轨道(LEO)卫星网络中的安全、可审计的多供应商联邦学习。该框架将共识机制卸载到高空平台(HAP),采用权威证明(PoA)共识,在亚秒级延迟(0.16-0.35秒)内完成区块确认,同时确保模型更新的透明性和可审计性。通过跨供应商协作和考虑新旧程度/声誉的加权聚合,OrbitChain显著提升了收敛速度,在真实卫星数据集上比单供应商方案快达30小时,并提高了全局模型精度。实验表明该框架在保护隐私和安全性的同时,有效降低了计算和通信开销,为多供应商

2025-12-18 09:17:03 732

原创 通往网络安全精准性的人工智能自适应之路

本文探讨了网络安全领域生成式AI流水线的关键挑战与实践经验。面对快速演变的威胁环境,作者提出需结合检索增强生成(RAG)和持续学习两种自适应机制:前者通过知识图谱结构化检索提升精确性,后者采用无监督LoRA微调实现模型持续更新。文章特别强调网络安全特有的精确性要求——需从海量噪音中提取可执行建议,并分析了智能体化RAG、知识图谱增强等技术在应对数据噪音、虚假信息等方面的优势。最后指出,未来需发展开源、可解释的AI安全工具,整合多种技术构建动态防御体系。

2025-12-17 06:56:00 611

原创 用于高光谱单幅图像超分辨率的双域卷积网络

本文提出了一种轻量级双域超分辨率网络DDSRNet,通过结合空间网络(Spatial-Net)和离散小波变换(DWT)来提升高光谱图像超分辨率性能。Spatial-Net负责初始特征提取和双线性上采样,DWT模块将图像分解为低频和高频分量进行细化处理。该方法采用混合损失函数联合优化空间和频域重建,在PaviaC、PaviaU和Chikusei三个数据集上表现出色,尤其在4倍下采样时MPSNR提升0.51dB。DDSRNet仅需0.07M参数,显著优于现有方法,实现了精度与效率的良好平衡。

2025-12-17 06:55:52 655

原创 M3Net:一种基于图神经网络的多指标专家混合网络数字孪生

摘要: 5G/6G网络的快速发展推动了自动驾驶、虚拟现实等低延迟应用的需求,但海量连接设备与异构性能要求使网络管理日益复杂。传统网络建模方法(如离散事件模拟)难以兼顾准确性与可扩展性。本文提出M3Net,一种基于图神经网络(GNN)的多指标专家混合网络数字孪生(NDT)模型,通过分层架构与专家门控机制,同时预测流级别的延迟、抖动和丢包。实验表明,M3Net将流延迟预测的MAPE从20.06%降至17.39%,并在抖动与丢包分类中分别达到66.47%和78.7%的准确率。此外,其高效GPU实现显著加速训练过程

2025-12-17 06:55:42 860

原创 BlockFLEX:用于低地球轨道卫星网络的自适应生存架构与分层路由

BlockFLEX:一种低轨卫星网络自适应生存架构 本文提出BlockFLEX架构,用于解决低轨卫星网络(LEO)的动态拓扑和链路故障问题。该架构通过将卫星组织成自治区块(block)建立稳定底层网络,采用分层路由方案结合无收敛地理路由和隔离收敛路由。关键创新包括:1)动态自适应区块网络(DABNet)掩盖网络波动性;2)分层路由方案(DABR)实现高效弹性路由;3)n步回溯确认(nBAS)保护机制;4)最优源卫星选择算法(OS3)。实验表明,在30%链路故障下,BlockFLEX可达性提升2倍,保持近10

2025-12-16 07:27:28 755

原创 Tyche:一种用于卫星波束跳变的混合计算框架

本文提出了一种用于高通量卫星波束跳变系统的混合计算框架Tyche,以解决大规模小区场景下照明模式计算的技术挑战。Tyche整合了两种算法:基于贪婪策略的G-BH算法实现毫秒级实时计算,以及创新的MCTS-BH算法通过蒙特卡洛树搜索优化吞吐量性能。研究采用滑动窗口算法和剪枝技术将MCTS-BH的计算时间降低81.41%,同时在127个小区场景中实现相比传统方法高达98.76%的吞吐量提升。实验验证了该框架在37-127个小区规模下的有效性,并通过离散化策略优化了内存使用效率。该研究为卫星通信系统提供了兼顾实时

2025-12-16 07:27:15 829

2402.05917v2.pdf

2402.05917v2

2025-07-21

2312.01381v1.pdf

2312.01381v1

2025-07-21

2311.16926v5.pdf

2311.16926v5

2025-07-21

2312.03502v2.pdf

2312.03502v2

2025-07-21

2311.15537v2.pdf

2311.15537v2

2025-07-21

2401.03707v2.pdf

2401.03707v2

2025-07-21

2403.15019v1.pdf

2403.15019v1

2025-07-21

2401.16741v2.pdf

2401.16741v2

2025-07-21

2401.13627v2.pdf

2401.13627v2

2025-07-21

2401.00027v2.pdf

2401.00027v2

2025-07-21

2401.15261v2.pdf

2401.15261v2

2025-07-21

【5G网络与边缘计算】基于SRv6的多接入边缘应用访问方案:优化数据路径与资源管理

内容概要:本文探讨了在5G网络中使用Segment Routing over IPv6(SRv6)访问边缘计算应用的方法。随着多接入边缘计算(MEC)在5G及未来网络中的兴起,优化数据路径并确保资源按政策使用变得至关重要。文章首先回顾了现有的边缘资源访问解决方案及其局限性,随后提出将SRv6集成到5G架构中以解决这些问题。SRv6不仅与现有5G控制平面兼容,还允许运营商对绑定和服务访问进行控制,支持用户移动性和运行时更新,并具备良好的可扩展性。此外,文中还介绍了基于UERANSIM和free5GC的测试平台,展示了UE如何根据连接的5G切片访问不同的应用实例。 适合人群:从事5G网络、边缘计算及相关领域的研究人员和技术人员,尤其是对网络架构和协议设计感兴趣的读者。 使用场景及目标:①理解当前边缘计算应用访问方案的局限性;②掌握SRv6在5G网络中的应用方式及其优势;③探索如何利用SRv6实现高效、灵活的边缘应用访问机制。 其他说明:本文提出的SRv6解决方案旨在满足五个关键需求:与5G控制平面兼容、运营商可控、支持用户移动性、支持运行时更新以及具有良好的可扩展性。实验部分通过构建测试平台验证了该方案的可行性,未来工作将聚焦于动态配置SR网关和支持5G切换流程。

2025-07-20

EFormer:增强型Transformer用于前景语义与轮廓特征的人像抠图研究及其实现

卷积神经网络(CNN)难以捕捉远距离依赖性和复杂的全局信息,Vision Transformer虽然在低频成分提取上表现出色,但对于高频信息的处理存在明显不足。为解决此问题,论文创新地使用了跨分辨率交叉注意力模块,并建立了语义轮廓检测器(SCD),以及分别设计了边缘提取分支(CEEB)和语义抽取分支(SEB),确保同时优化两个层面的内容表示能力。实验结果显示EFormer显著提升了对复杂背景条件下的人脸边界及细节点位的精确度,相比以往模型实现了性能超越。此外,EFormer不需要预设参数即可达到良好的适应性和稳定性。 适合人群:计算机视觉、机器学习领域的研究人员,特别是从事图像分割、深度估计等相关工作的专业人士。 使用场景及目标:① 适用于需要高精度分离主体对象与背景区别的应用场景,如影视特效制作、社交媒体平台的内容编辑工具、智能相册应用等领域;② 提升模型对高频细节(比如头发丝边缘)的捕捉精度和鲁棒性;③ 推动未来研究方向的发展,在此基础上可以进一步探索更多种类的任务处理方式。

2025-02-13

视频实例分割的创新方法-无监督VideoCutLER算法的研究与应用

内容概要:本文介绍了名为VideoCutLER的创新无监督多实例视频分割算法。研究指出,现有的无监督视频实例分割通常依靠光学流估计进行运动估计,在面对遮挡、光照变化等情况时性能不佳。为解决这一问题,作者提出了一种简单的基于剪辑合成与训练(cut-synthesis-and-leearn)的管道模型。这个流程包括三个关键步骤:首先,利用MaskCut从未标注图像中生成多个对象伪掩膜;其次,使用ImageCut2Video将一批未标记图片转换成带有关联轨迹的合成视频;最后用伪轨迹对一个无监督的视频分割模型进行训练。该模型仅依赖无标签图片即可学习并执行视频实例分割任务,实现了比现有最优解更好的效果。实验结果显示了其卓越的表现以及强大的泛化能力。 适合人群:从事计算机视觉及相关领域的研究人员和技术从业者,特别是在深度学习应用于视频分析方面有一定经验的基础研究人员或高级技术人员。

2025-02-13

室内环境无监督3D实例分割方法UnScene3D的技术实现与应用

内容概要:本文介绍了名为UnScene3D的新方法,用于解决无需人工标注即可对复杂室内的3D点云数据进行对象实例分割的问题。作者提出了基于伪掩膜生成与自训练迭代的方法,有效利用自我监督颜色和几何特征生成稀疏的初始伪实例掩膜,并通过模型自训练逐步提高精度和密实度,最终实现在无手动注释下高效而准确地识别3D物体并给出完整的实例分割。实验表明,该算法相比已有的无监督和弱监督3D分割方法有着更高的精确率。 适用人群:计算机视觉领域研究者和从业者、自动驾驶以及机器人导航研究人员。 使用场景及目标:主要针对RGB-D相机采集的真实世界三维点云计算设备,适用于需要从复杂且凌乱的场景中提取特定个体的任务,如机器人视觉系统构建。该工具的目标是从未标记的数据集中识别独立的对象实例并且为其绘制边界框。 其他说明:UnScene3D采用了一种新颖的基于几何先验和多模态特征的伪遮罩生成技术和一种有效的自监督框架来进行密集预测。

2025-01-22

视频对象分割领域的引导槽注意力机制及其应用

内容概要:论文提出了一种新型的引导槽注意力(Guided Slot Attention, GSA)网络用于无监督视频对象分割任务,旨在复杂背景下更好地分离前景与背景并提高特征提取能力。具体而言,模型引入了引导槽、特征聚合转换器(Feature Aggregation Transformer,FAT)以及K近邻过滤算法,利用局部和全局特征进行迭代调整,最终生成更精准的分割掩模。此外,在DAVIS-16和FBMS两个知名数据集上进行了大量实验,证明了提出的GSA网络优于现有方法并在多物体视频中表现稳健。 适合人群:计算机视觉、机器学习的研究人员和技术爱好者,对视频对象分割感兴趣的开发者。 使用场景及目标:适用于各种需要高质量无监督视频对象分割的应用场合,如自动驾驶系统中的障碍物检测、医疗影像分析等领域;主要目的是改进复杂场景下前景背景的有效区分,增强识别精度。 其他说明:研究团队来自延世大学,相关代码已经开源发布于GitHub平台上。该研究得到韩国政府信息技术规划评估研究所(IITP)的资金支持,并被收录进多个顶级国际会议和期刊中。

2025-01-22

无监督视频对象分割领域的跨模态与帧间注意力机制研究及其应用

内容概要:本文提出了一种新的无监督视频对象分割(unsupervised VOS)方法——双原型注意力机制(Dual Prototype Attention),即IMA(跨模态注意模块)和IFA(帧间注意模块)。这些机制分别解决了现有多模态融合和时间聚集方法中存在的鲁棒性和计算效率等问题,显著提高了在多个公开基准数据集上的表现。此外,论文还探讨了原型嵌入对性能的影响并对其进行了验证。 适合人群:对视频处理特别是无监督视频对象分割领域感兴趣的计算机视觉研究员和技术开发者。 使用场景及目标:适用于各种需要进行高质量自动图像或视频内容分析的应用环境,如智能监控、增强现实、自动驾驶等领域。具体的目标是提高模型识别最突出物体时的精度以及稳定性,即使遇到遮挡或者复杂背景也能有效运作。 阅读建议:本篇文献提供了详尽的技术细节和支持性实验结果来展示所提出的DPA方法优越之处。因此,在理解和评估该研究成果的基础上可以深入了解如何利用注意力机制提升深度学习模型的效果,尤其是对于涉及时间和空间维度的数据处理任务非常有价值。

2025-01-22

深度混合专家语言模型DeepSeek-V3的技术报告:高效推理与经济训练实现

内容概要:本文介绍了大型混合专家(MoE)语言模型DeepSeek-V3的技术报告。DeepSeek-V3拥有总计671亿参数,在每个令牌激活约37亿参数,采用Multi-head Latent Attention (MLA)架构和DeepSeekMoE架构确保高效的推理和成本效益的训练。为优化推理和成本有效训练,DeepSeek-V3还引入了无辅助损失策略用于负载均衡以及多令牌预测训练目标,旨在增强性能。同时文中讨论了预训练、后训练阶段,及其硬件部署策略,并展示了全面评估表明DeepSeek-V3相较于其他开源模型表现更为优秀且与顶级闭源模型媲美。 适用人群:具备一定深度学习和自然语言处理基础知识的研发人员和技术爱好者。 使用场景及目标:①探讨最新的深度学习优化技术和大规模语言模型的设计;②理解高效率的语言模型训练框架及其经济性;③学习先进模型在不同任务基准测试上的实际应用表现。 其他说明:该研究致力于推动开源模型在性能和实用性方面的边界拓展,并为研究人员提供了新的研究方向和发展路径。尽管其性能出色,但其部署规模较大可能对小型团队带来负担。未来的改进将依赖于更先进的硬件发展来进一步提升速度并降低成本。此外,文章强调该系列持续关注开放源码长远发展模式,逐步接近人工通用智能(AGI)这一最终目标。

2025-01-18

基于等变变换改善图像重建的插件与即用(Plug-and-Play)算法稳定性研究

内容概要:本文主要探讨了将等变属性引入插件与即用(Plug-and-Play,PnP)算法,特别是应用于图像重建中的效果提升方法。具体来说,在解决逆向成像问题时,通过随机应用变换及其逆操作于图像降噪器输入输出的方式对降噪器施加约束。该方法不仅可以减少由隐含先验模型所导致的算法不稳定性及次优解情况,而且能显著提高重建质量与稳定性。同时,文章从理论角度分析并解释了这一现象产生的原因,指出通过这种机制能够更好地保持隐含图像先验的一致性和鲁棒性,并进行了大量实验来验证这一点的有效性。 适用人群:从事机器视觉和深度学习方向的研究人员以及开发者们。这些人通常需要构建高质量和高效的算法用于解决如医学成像、遥感影像处理等各种实际场景。 使用场景及目标:①改进现有插件与即用框架的稳定性和效率,确保各种情况下都能获得良好性能;②增强基于不同模态(例如CT扫描、MRI等)数据的应用系统的泛化能力;③推动相关领域的学术研究和技术进步,促进更多创新成果出现。 其他说明:尽管该研究所提出的方法在很大程度上优化了算法的表现,但在某些特定配置下依然可能出现分歧或幻影伪迹。因此,在实践中仍需谨慎评估选择是否采用这种方法论并进行充分测试验证。此外,本项目得到了多项资助支持,并利用IDRIS提供的高性能计算资源完成部分计算任务。

2025-01-18

残差去噪扩散模型(RDDM):图像生成与修复任务中的双扩散框架及其应用

内容概要:本文提出了一种名为残差去噪扩散模型(RDDM)的新方法。这一框架将传统的单向去噪扩散过程解耦为残差扩散和噪声扩散两个部分,从而扩展了原始的基于去噪的扩散模型到统一并具解释性的模型上,能够同时应用于图像生成与修复任务。通过在实验中引入残差表示目标图到退化输入之间的有方向转换,明确指导逆向生成用于图像恢复,而噪声则侧重随机扰动增加变化度。文中探讨了多种采样方式,并证明其一致性以及优于现有去噪模型的表现能力。 适合人群:从事图像处理的研究员和技术人员,对深度学习中的生成对抗网络、自编码器、变分推理等领域有一定背景的知识工作者。 使用场景及目标:适用于需要高质量图像生成或修复的应用场合,如去除阴影、低光照增强、消雨、图像插值等。RDDM提供了解决这些任务的有效工具,能够在保持高视觉效果的同时减少计算复杂性和提高训练效率。 其他说明:作者提供了开源代码和预训练好的模型来促进进一步探索与发展该创新性框架(网址见论文)。此外,研究发现不同的采样步骤会影响最终生成的质量,并提出了一些优化系数安排的方法。对于未见过的任务,则建议通过自动选择最佳抽样机制来达到理想的效果。

2025-01-18

Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper.pdf

Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper

2025-07-21

Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper.pdf

Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper

2025-07-21

2403.19225v1.pdf

2403.19225v1

2025-07-21

Hu_Training_Vision_Transformers_for_Semi-Supervised_Semantic_Segmentation_CVPR_2024_paper.pdf

Hu_Training_Vision_Transformers_for_Semi-Supervised_Semantic_Segmentation_CVPR_2024_paper

2025-07-21

Yu_Shadow-Enlightened_Image_Outpainting_CVPR_2024_paper.pdf

Yu_Shadow-Enlightened_Image_Outpainting_CVPR_2024_paper

2025-07-21

Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper.pdf

Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper

2025-07-21

2403.01482v4.pdf

2403.01482v4

2025-07-21

2404.06542v1.pdf

2404.06542v1

2025-07-21

2403.10362v2.pdf

2403.10362v2

2025-07-21

2403.07700v1.pdf

2403.07700v1

2025-07-21

2403.07630v1.pdf

2403.07630v1

2025-07-21

2404.04231v1.pdf

2404.04231v1

2025-07-21

2403.01818v1.pdf

2403.01818v1

2025-07-21

2404.04050v1.pdf

2404.04050v1

2025-07-21

2403.18342v1.pdf

2403.18342v1

2025-07-21

2404.01518v1.pdf

2404.01518v1

2025-07-21

2403.18186v1.pdf

2403.18186v1

2025-07-21

2403.16370v1.pdf

2403.16370v1

2025-07-21

2404.00130v1.pdf

2404.00130v1

2025-07-21

2404.00252v2.pdf

2404.00252v2

2025-07-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除