UVa 12545 Bits Equalizer——贪心

先把能交换的交换了,尽量交换,然后进行数字的变换,变换过程中遇到1 到 0直接输出-1;

变换过程好说,交换过程要考虑的情况比较多

首先把具体的数字进行交换,二层循环

然后把带问号的数字进行交换,具体怎么交换看代码,又是二层循环

最后一层循环解决变换问题

最终复杂度为O(n^2)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

char a[200], b[200];
int n, ans;

int main()
{
    int T, flag = 0; scanf("%d", &T); getchar();
    while (T--) {
        gets(a);
        gets(b);
        n = strlen(a);
        ans = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (j == i) continue;
                if (a[i] == b[j] && b[i] == a[j] && a[i] != b[i]) {
                    swap(a[i], a[j]);
                    ans++;
                }
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (j == i) continue;
                if (a[i] == '1' && b[i] == '0' && b[j] == '1' && a[j] != '1') {
                    swap(a[i], a[j]);
                    ans++;
                }
                else if (a[i] == '0' && b[i] == '1' && a[j] == '?' && b[j] == '0') {
                    swap(a[i], a[j]);
                    ans++;
                }
            }
        }
        bool ok = true;
        for (int i = 0; i < n; i++) {
            if (a[i] == '1' && b[i] == '0') {
                ok = false; break;
            }
            if (a[i] == '?') {
                a[i] = b[i];
                ans++;
            }
            else if (a[i] == '0' && b[i] == '1') {
                a[i] = b[i];
                ans++;
            }
        }
        if (!ok) ans = -1;
        printf("Case %d: %d\n", ++flag, ans);
    }
    return 0;
}


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值