2017.9.1 公路修建问题 思考记录

竟然一遍A了湖南省选题、感人至深

这个题一看便知是要二分的。

所以剩下的就是利用构造树来检验

首先,对于c1,我们可以求一颗最小生成树,来保留尽可能多的边(因为大于检验值的都不合法,需要删掉,为了让保留的边尽可能多,就需要最小生成树)

但对于c1,一定有小于二分值的,那他会不会贡献答案呢?


如图,不会。


然后剩下的c1便一定都不会再被选了,可以判断一下边数是否大于k来检验

如果大于k,则继续从c2里面选边,选到边权>二分值为止,看一下边数就可以了

O(nlog^2n)级别,跑得飞快


码:


#include<iostream>
#include<cstdio>
#include<algorithm>;
#define N 40004
using namespace std;
int fu[N],i,m,n,a,b,c1,c2,k,maxx,l,r,ans;
int find(int x)
{
	if(fu[x]!=x)fu[x]=find(fu[x]);
	 return fu[x];
}
struct bian
{
	int q,z,c,cc;
}bb[N],dd[N];
bool cmp(bian a,bian b)
{
	return a.c<b.c;
}
bool cmp2(bian a,bian b)
{
	return a.cc<b.cc;
}
int main()
{
	scanf("%d%d%d",&n,&k,&m);
	for(i=1;i<m;i++)
	{
		scanf("%d%d%d%d",&a,&b,&c1,&c2);
		bb[i].q=a;
		bb[i].z=b;
		bb[i].c=c1;
		bb[i].cc=c2;	
		dd[i]=bb[i];
		maxx=max(maxx,max(c1,c2));			
	}
	sort(bb+1,bb+m,cmp);
	sort(dd+1,dd+m,cmp2);
	l=1;r=maxx;
	while(l<r)
	{
		int mid=(l+r)>>1;
		for(i=1;i<=n;i++)fu[i]=i;
		int o=0;
		for(i=1;i<m;i++)
		{
			if(bb[i].c>mid||o==n-1)break;
			int f1=find(bb[i].q),f2=find(bb[i].z);
			if(f1!=f2)
			{
				fu[f1]=f2;
				++o;
			}
		}
		if(o<k)
		{
			l=mid+1;
			continue;
		}
		for(i=1;i<m;i++)
		{
			if(dd[i].cc>mid||o==n-1)break;
			int f1=find(dd[i].q),f2=find(dd[i].z);
			if(f1!=f2)
			{
				fu[f1]=f2;
				++o;
			}
		}
		if(o==n-1)
		{
			ans=mid;
			r=mid;	
		}else
		{
		l=mid+1;			
		}
	}
	printf("%d",ans);
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值