竟然一遍A了湖南省选题、感人至深
这个题一看便知是要二分的。
所以剩下的就是利用构造树来检验
首先,对于c1,我们可以求一颗最小生成树,来保留尽可能多的边(因为大于检验值的都不合法,需要删掉,为了让保留的边尽可能多,就需要最小生成树)
但对于c1,一定有小于二分值的,那他会不会贡献答案呢?
如图,不会。
然后剩下的c1便一定都不会再被选了,可以判断一下边数是否大于k来检验
如果大于k,则继续从c2里面选边,选到边权>二分值为止,看一下边数就可以了
O(nlog^2n)级别,跑得飞快
码:
#include<iostream>
#include<cstdio>
#include<algorithm>;
#define N 40004
using namespace std;
int fu[N],i,m,n,a,b,c1,c2,k,maxx,l,r,ans;
int find(int x)
{
if(fu[x]!=x)fu[x]=find(fu[x]);
return fu[x];
}
struct bian
{
int q,z,c,cc;
}bb[N],dd[N];
bool cmp(bian a,bian b)
{
return a.c<b.c;
}
bool cmp2(bian a,bian b)
{
return a.cc<b.cc;
}
int main()
{
scanf("%d%d%d",&n,&k,&m);
for(i=1;i<m;i++)
{
scanf("%d%d%d%d",&a,&b,&c1,&c2);
bb[i].q=a;
bb[i].z=b;
bb[i].c=c1;
bb[i].cc=c2;
dd[i]=bb[i];
maxx=max(maxx,max(c1,c2));
}
sort(bb+1,bb+m,cmp);
sort(dd+1,dd+m,cmp2);
l=1;r=maxx;
while(l<r)
{
int mid=(l+r)>>1;
for(i=1;i<=n;i++)fu[i]=i;
int o=0;
for(i=1;i<m;i++)
{
if(bb[i].c>mid||o==n-1)break;
int f1=find(bb[i].q),f2=find(bb[i].z);
if(f1!=f2)
{
fu[f1]=f2;
++o;
}
}
if(o<k)
{
l=mid+1;
continue;
}
for(i=1;i<m;i++)
{
if(dd[i].cc>mid||o==n-1)break;
int f1=find(dd[i].q),f2=find(dd[i].z);
if(f1!=f2)
{
fu[f1]=f2;
++o;
}
}
if(o==n-1)
{
ans=mid;
r=mid;
}else
{
l=mid+1;
}
}
printf("%d",ans);
}