bzoj3231 [SDOI2008]递归数列 矩乘

标准的矩乘模型,标准的数据范围


注意构造矩阵的时候使用倍增转移法,这样清晰得多


注:

由于我的写法问题,前缀和算到n-1,所以要n++,而<k的部分与后面前缀和的运算无关,所以还要再减回来


码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long n,m,P,b[19],c[19],daan1,daan2,g[19],ans[19],dp[19][19],dpl[19][19],i,j,k,l;
int main()
{
	scanf("%lld",&k);
	for(i=1;i<=k;i++)scanf("%lld",&b[i]);
	for(i=1;i<=k;i++)scanf("%lld",&c[i]);
scanf("%lld%lld%lld",&m,&n,&P);
n++;
dp[1][k]=c[k];
for(i=2;i<=k;i++)
{
dp[i][i-1]=1;
dp[i][k]=c[k-i+1];
}	
for(i=1;i<=k;i++)
ans[i]=b[i],ans[k+1]+=b[i],ans[k+1]%=P;
ans[k+1]-=b[k];
ans[k+1]=(ans[k+1]+P)%P;
dp[k][k+1]=1;
dp[k+1][k+1]=1;	
	if(n<k)
	{
		for(i=1;i<n;i++)
		{
			daan1+=b[i];
			daan1%=P;
		}		
	}else
	{	
	n-=k;	
while(n)
{
if(n&1)
{
	for(i=1;i<=k+1;i++)
	for(j=1;j<=k+1;j++)
	{
		g[j]+=ans[i]*dp[i][j];
		g[j]%=P;		
	}
	for(i=1;i<=k+1;i++)
	ans[i]=g[i],g[i]=0;	
}
	for(i=1;i<=k+1;i++)
	for(j=1;j<=k+1;j++)
	for(l=1;l<=k+1;l++)
	{
		dpl[i][l]+=dp[i][j]*dp[j][l];
		dpl[i][l]%=P;		
	}
	for(i=1;i<=k+1;i++)
	for(j=1;j<=k+1;j++)
	dp[i][j]=dpl[i][j],dpl[i][j]=0;
	n/=2;
}	
daan1+=ans[k+1];
daan1%=P;
    }
memset(dp,0,sizeof(dp));
memset(dpl,0,sizeof(dpl));
memset(ans,0,sizeof(ans));
memset(g,0,sizeof(g));
dp[1][k]=c[k];
for(i=2;i<=k;i++)
{
dp[i][i-1]=1;
dp[i][k]=c[k-i+1];
}	
for(i=1;i<=k;i++)
ans[i]=b[i],ans[k+1]+=b[i],ans[k+1]%=P;
ans[k+1]-=b[k];
ans[k+1]=(ans[k+1]+P)%P;
dp[k][k+1]=1;
dp[k+1][k+1]=1;	
	if(m<k)
	{
		for(i=1;i<m;i++)
		{
			daan2+=b[i];
			daan2%=P;
		}		
	}else
	{	
	m-=k;	
while(m)
{
if(m&1)
{
	for(i=1;i<=k+1;i++)
	for(j=1;j<=k+1;j++)
	{
		g[j]+=ans[i]*dp[i][j];
		g[j]%=P;		
	}
	for(i=1;i<=k+1;i++)
	ans[i]=g[i],g[i]=0;	
}
	for(i=1;i<=k+1;i++)
	for(j=1;j<=k+1;j++)
	for(l=1;l<=k+1;l++)
	{
		dpl[i][l]+=dp[i][j]*dp[j][l];
		dpl[i][l]%=P;		
	}
	for(i=1;i<=k+1;i++)
	for(j=1;j<=k+1;j++)
	dp[i][j]=dpl[i][j],dpl[i][j]=0;
	m/=2;
}	
daan2+=ans[k+1];
daan2%=P;
    }
printf("%lld",(daan1-daan2+P)%P);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值