Codeforces Round #766 (Div. 2) - B
题目翻译
拉胡尔和蒂娜期待着在大学开始新的一年。当他们进入新教室时,他们观察到学生的座位是以 n×m 的网格排列的。r 行和c 列中的座椅由(r,c)表示,两个座椅(a,b)和(c,d)之间的距离为| a−c |+| b−d |。
作为班长,蒂娜可以拿到整整 k 桶的粉红色油漆。发生以下过程。
- 首先,蒂娜选择了教室里的 k 座位,用粉红色油漆。一桶油漆正好能油漆一个座位。
- 蒂娜在上一步为 k 座椅上色后,拉胡尔选择他坐的地方。他不会选择一个漆成粉红色的座位,因为他讨厌粉红色。
- 拉胡尔选好座位后,蒂娜为自己选了一个座位。除了拉胡尔选的座位外,她可以选择任何一个座位,无论是否上漆。
拉胡尔想选择一个尽可能靠近蒂娜的座位。然而,蒂娜想坐在离拉胡尔尽可能远的地方,因为一些复杂的关系史,我们无法融入声明中!
现在,拉胡尔想知道k=0,1,…,n⋅m−1。如果蒂娜有 k 桶油漆,如果拉胡尔和蒂娜都知道对方的意图,并且都尽可能从战略上采取行动,拉胡尔能和蒂娜坐得多近?请帮助满足Rahul的好奇心!
输入
输入由多个测试用例组成。第一行包含一个整数 t(1≤t≤5⋅1e4)-测试用例的数量。测试用例的描述如下。
每个测试用例的第一行包含两个整数 n,m(2≤N⋅M≤1e5)-教室中座位的行数和列数。
n·m 的和所有测试用例中不超过1e5。
输出
对于每个测试用例,输出 n⋅m 有序整数——如果Rahul和Tina对每个 k 都是最优的,那么它们之间的距离∈[0,n⋅m−1] 。
解题思路
有个事实是,如果蒂娜想离拉胡儿远点,那她必然会选择角落的位置,也就是她只会选择四个角的位置,所以我们只要考虑拉胡儿坐哪就可以了,而他那都可能坐到,所以直接从头遍历一遍,边遍历边处理存储答案就行了。
代码示例
#include<iostream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int t;
int n,m;
int cnt;
int a[100101];
int main(){
cin>>t;
while(t--){
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int d=0;
d=max(d,max(abs(i-1)+abs(j-1),max(abs(i-1)+abs(j-m),max(abs(i-n)+abs(j-1),abs(i-n)+abs(j-m)))));
a[++cnt]=d;
}
}
sort(a+1,a+1+cnt);
for(int i=1;i<=cnt;i++) cout<<a[i]<<" ";
cout<<endl;
memset(a,0,sizeof(a));
cnt=0;
}
}