1.算法说明
就是建造哈夫曼树树,从而使得构造出的树带权路径长度最小
2.步骤
输入叶子结点个数n;
创建长度为2*n-1的数组并初始化;
while(i<n) 循环输入n个叶子结点的权值;
while(n-1次循环建立树){
在parent==-1的元素中查找权最小的两个结点;
合并两个叶子结点,并加入新结点到数组;
}
3.代码
//构造haffman树
#include <iostream>
using namespace std;
const int MAX = 10000;
struct Node{
int weight; //权值
int parent; //双亲
int lchild;
int rchild;
};
//创建一个haffman树
void createHaffman(Node* &a, int n){
int m1,m2, x1, x2;//m1,m2是最小的两个值,x1,x2是他们的位置
//n个结点,只需要n-1次就可以构造好
for(int i=0; i<n-1; i++){
m1 = m2 = MAX;
x1 = x2 = 0;
//查找最小值,在查找到最小的两个值后,构造新的节点,并加入到a中(数组的n+i个节点之后),长度加1,故而查找过程中长度不断增加n+i
for(int j=0; j<n+i; j++){
//首先必须满足,还没有双亲的孤立节点,查找m1,m2都是最小
if(a[j].parent == -1 && a[j].weight < m1){
m1 = a[j].weight;
x1 = j;
}else if(a[j].parent == -1 && a[j].weight < m2){
m2 = a[j].weight;
x2 = j;
}
}
//新的节点存入n+i,并设置x1, x2的双亲
a[x1].parent = n+i;
a[x2].parent = n+i;
a[n+i].weight = a[x1].weight + a[x2].weight;
a[n+i].parent = -1;
a[n+i].lchild = x1;
a[n+i].rchild = x2;
}
}
//测试得到最小和次小的值
void test(){
int a[] = {3,4,7,0,79,9,12,1,4};
int m = MAX,k = MAX;
for(int i=0; i<9; i++){
if(a[i]<m){
m = a[i];
}else if(a[i]<k){
k = a[i];
}
}
cout<<m<<" "<<k<<endl;
}
int main(){
int n;
cout<<"输入叶子节点个数:";
cin>>n;
Node* a = new Node[2*n - 1];
for(int i=0; i<2*n-1; i++){//初始化
a[i].weight = 0;
a[i].parent = -1;
a[i].lchild = -1;
a[i].rchild = -1;
}
cout<<"输入前n个叶子结点的权值"<<endl;
for(int i=0; i<n; i++){
cin>>a[i].weight;
}
cout<<"输出构造好的haffman树"<<endl;
createHaffman(a, n);
for(int i=0; i<2*n-1; i++){
cout<<"["<<a[i].weight<<","<<a[i].parent<<","<<a[i].lchild<<","<<a[i].rchild<<"]"<<endl;
}
delete[] a;
return 0;
}