牌型种数
ps:2015年蓝桥杯Java语言B组第七题
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。
一共有13种牌型(A,2,3,4,5,6,7,8,9,10,J,Q,K),每种可以拿到0~4张,只要牌数达到13张就满足条件。这道题可以用暴力破解或者回溯穷举再剪枝的方法做。
暴力破解:
package b;
public class Main{
public static int count = 0;
public static void main(String[] args) {
for (int a = 0; a <= 4; a++) {
for (int b = 0; b <= 4; b++) {
for (int c = 0; c <= 4; c++) {
for (int d = 0; d <= 4; d++) {
for (int e = 0; e <= 4; e++) {
for (int f = 0; f <= 4; f++) {
for (int g = 0; g <= 4; g++) {
for (int h = 0; h <= 4; h++) {
for (int i = 0; i <= 4; i++) {
for (int j = 0; j <= 4; j++) {
for (int k = 0; k <= 4; k++) {
for (int l = 0; l <= 4; l++) {
for (int m = 0; m <= 4; m++) {
if ((a + b + c + d + e + f + g + h + i + j + k + l
+ m) == 13) {
count++;
}
}
}
}
}
}
}
}
}
}
}
}
}
}
System.out.println(count);
}
}
ps:这种方法是遍历了所有结果,效率比较低,不过这道题只要结果,所以也可以用这种方法求解。
回溯穷举:
package b;
public class Main {
public static int sum = 0;
public static int count = 0;
public static void calculate(int kind) {
if (sum > 13 || kind > 13)
return;
if (kind == 13 && sum == 13) {
count++;
return;
}
if (kind < 13) {
for (int i = 0; i < 5; i++) {
sum += i;
calculate(kind + 1);
sum -= i; // 还原标记
}
}
}
public static void main(String[] args) {
calculate(0);
System.out.println(count);
}
}
ps:回溯法是每次研究当前类型的牌可以拿几张,注意还原sum的值就可以了。
答案:3598180