import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
/**
* 使用反射的方式将RDD转换成为DataFrame
* 1、自定义的类必须是public
* 2、自定义的类必须是可序列化的
* 3、RDD转成DataFrame的时候,他会根据自定义类中的字段名进行排序。
* @author zfg
*
*/
public class RDD2DataFrameByReflection {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("RDD2DataFrameByReflection");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlcontext = new SQLContext(sc);
JavaRDD<String> lines = sc.textFile("Peoples.txt");
JavaRDD<Person> personsRdd = lines.map(new Function<String, Person>() {
/**
*
*/
private static final long serialVersionUID = 1L;
@Override
public Person call(String line) throws Exception {
String[] split = line.split(",");
Person p = new Person();
p.setId(Integer.valueOf(split[0].trim()));
p.setNam(split[1]);
p.setAge(Integer.valueOf(split[2].trim()));
return p;
}
});
//传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame
//在底层通过反射的方式或得Person的所有field,结合RDD本身,就生成了DataFrame
DataFrame df = sqlcontext.createDataFrame(personsRdd, Person.class);
//命名table的名字为person
df.registerTempTable("personTable");
DataFrame resultDataFrame = sqlcontext.sql("select * from personTable where age > 7");
resultDataFrame.show();
//将df转成rdd
JavaRDD<Row> resultRDD = resultDataFrame.javaRDD();
JavaRDD<Person> result = resultRDD.map(new Function<Row, Person>() {
@Override
public Person call(Row row) throws Exception {
Person p = new Person();
p.setAge(row.getInt(0));
p.setId(row.getInt(1));
p.setNam(row.getString(2));
return p;
}
});
List<Person> personList = result.collect();
for (Person person : personList) {
System.out.println(person.toString());
}
}
}
RDD & java 类 (反射)构建 DataFrame ---java code
最新推荐文章于 2024-05-18 09:50:14 发布